Существующие системы координат. Декартовы прямоугольные системы координат. Прямоугольная система координат

Начало координат

Начало координат (начало отсчёта) в евклидовом пространстве - особая точка , обычно обозначаемая буквой О , которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.

Вектор, проведённый из начала координат, в другую точку называется радиус-вектором .

Декартова система координат

Начало координат делит каждую из осей на два луча - положительную полуось и отрицательную полуось.

В частности, начало координат можно ввести на числовой оси . В этом смысле можно говорить о начале координат для разных экстенсивных величин (времени , температуры и пр.)

Полярные системы координат


Wikimedia Foundation . 2010 .

Смотреть что такое "Начало координат" в других словарях:

    начало координат - Нулевая точка (точка пересечения осей) в плоской системе координат, применяемой в графических системах, работающих с двухмерными изображениями. Координата точки задается расстоянием от начала (центра) координат по горизонтальной оси X (абсцисса)… …

    начало координат - koordinačių pradžia statusas T sritis automatika atitikmenys: angl. origin of coordinates vok. Koordinatenanfangspunkt, m; Koordinatenursprung, m rus. начало координат, n pranc. origine de cordonnées, f … Automatikos terminų žodynas

    начало координат (графопостроителя) - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN plot origin … Справочник технического переводчика

    - (origin) Точка на графике, обозначающая нуль при любых измерениях. Диаграмма может иметь более одной точки отсчета. Двухфакторная квадратная диаграмма (box diagram), например, строится таким образом, что общие имеющиеся объемы каких либо факторов … Экономический словарь

    направленное реле сопротивления с характеристикой, не проходящей через начало координат - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN offset mho distance relay … Справочник технического переводчика

    характеристика направленного реле сопротивления в виде окружности, проходящей через начало координат - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN mho characteristic … Справочник технического переводчика

    начало отсчета - Позиция на экране дисплея, от которой начинаются все системы координат. Обычно находится в левом верхнем углу экрана. Тематики информационные технологии в целом EN origin … Справочник технического переводчика

    Прямоугольная система координат прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для… … Википедия

    Точка имеет три декартовых и три сферических координаты Сферическую систему координат удобно определять, соотносясь с д … Википедия

    Комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В… … Википедия

Книги

  • Веснадцать , Данилова Стефания , Поэт Стефания Данилова родилась 16 августа 1994 года в Петербурге, и безоговорочно влюблена в этот город. Амбидекстр, вундеркинд, полиглот, создавшая в три года первоевзрослое стихотворение.… Категория: Современная отечественная поэзия Серия: Звезда рунета Издатель: АСТ ,
  • Промысл , Рогатко Сергей Александрович , Новый роман "Промысл" писателя Сергея Рогатко, исповедующего реалистическое начало в русской литературе и подтвердившего это в своем известном романе" Мирянин", написан в жанре притчи,"… Категория:

Для задания декартовой прямоугольной системы координат нужно выбрать несколько взаимноперпендикулярных прямых, называемых осями. Точка пересечения осей O называется началом координат.

На каждой оси нужно задать положительное направление и выбрать единицу масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.

Рис. 2

Декартовыми прямоугольными координатами точки P на плоскости двух взаимно перпендикулярных прямых - осей координат или, что то же, проекции радиус-вектора r точки P на две

Когда говорят про двухмерную систему коодинат, горизонтальную ось называют осью абсцисс (осью Ox), вертикальную ось - осью ординат (осью Оy). Положительные направления выбирают на оси Ox - вправо, на оси Oy - вверх. Координаты x и y называются соответственно абсциссой и ординатой точки.

Запись P(a,b) означает, что точка P на плоскости имеет абсциссу a и ординату b.

Декартовыми прямоугольными координатами точки P в трехмерном пространстве называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до трех взаимно перпендикулярных координатных плоскостей или, что то же, проекции радиус-вектора r точки P на три взаимно перпендикулярные координатные оси.

В зависимости от взаимного расположения положительных направлений координатных осей возможны левая и правая координатные системы.

Рис. 3а
Рис. 3б

Как правило, пользуются правой координатной системой. Положительные направления выбирают: на оси Ox - на наблюдателя; на оси Oy - вправо; на оси Oz - вверх. Координаты x, y, z называются соответственно абсциссой, ординатой и аппликатой.

Координатными поверхностями, для которых одна из координат остается постоянной, здесь являются плоскости, параллельные координатным плоскостям, а координатными линиями, вдоль которых меняется только одна координата, - прямые, параллельные координатным осям. Координатные поверхности пересекаются по координатным линиям.

Запись P(a,b,c) означает, что точка Q имеет абсциссу a, ординату b и аппликату c.

4.1. ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ

В топографии наиболее широкое распространение получили прямоугольные координаты. Возьмем на плоскости две взаимно перпендикулярные линии - O Х и OY . Эти линии называют осями координат, а точка их пересечения (O ) - началом координат.

Рис. 4.1. Прямоугольные координаты

Положение любой точки на плоскости можно легко определить, если указать кратчайшие расстояния от осей координат до данной точки. Кратчайшими расстояниями являются перпендикуляры. Расстояния по перпендикулярам от осей координат до данной точки называют прямоугольными координатами этой точки. Отрезки, параллельные оси X , называют координатами х А , а параллельные оси Y - координатами у А .
Четверти прямоугольной системы координат нумеруются. Их счет идет по ходу часовой стрелки от положительного направления оси абсцисс - I, II, III, IV (рис. 4.1).
Прямоугольные координаты, о которых шла речь, применяют на плоскости. Отсюда они получили название плоских прямоугольных координат. Эту систему координат применяют на небольших участках местности, принимаемых за плоскость.

4.2. ЗОНАЛЬНАЯ СИСТЕМА ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА

При рассмотрении вопроса «Проекции топографических карт» было отмечено, что поверхность Земли проектируется на поверхность цилиндра, который касается поверхности Земли по осевому меридиану. При этом на цилиндр проектируется не вся поверхность Земли, а лишь часть ее, ограниченная 3° долготы на запад и 3° на восток от осевого меридиана. Поскольку каждая из проекций Гаусса передает на плоскость только фрагмент поверхности Земли, ограниченный меридианами через 6° долготы, то всего на поверхность Земли должно быть составлено 60 проекций (60 зон). В каждой из 60 проекций образуется отдельная система прямоугольных координат.
В каждой зоне осью X является средний (осевой) меридиан зоны, вынесенный западнее на 500 км от своего фактического положения, а осью Y - экватор (рис. 4.2).


Рис. 4.2. Система прямоугольных координат
на топографических картах

Пересечение вынесенного осевого меридиана с экватором будет началом координат: х = 0, у = 0 . Точка пересечения экватора и фактического осевого меридиана имеет координаты: х = 0, у = 500 км.
В каждой зоне имеется свое начало координат. Счет зон ведется от Гринвичского меридиана на восток. Первая шестиградусная зона расположена между Гринвичским меридианом и меридианом с восточной долготой 6º(осевой меридиан 3º). Вторая зона - 6º в.д. - 12º в.д (осевой меридиан 9º). Третья зона - 12º в.д. - 18º в.д. (осевой меридиан 15º). Четвертая зона - 18º в.д. - 24º в.д. (осевой меридиан 21º) и т.д.
Номер зоны обозначен в координате у первой цифрой. Например, запись у = 4 525 340 означает, что заданная точка находится в четвертой зоне (первая цифра) на расстоянии 525 340 м от осевого меридиана зоны, вынесенного западнее 500 км.

Чтобы определить номер зоны по географическим координатам, необходимо к долготе, выраженной в целых числах градусов, прибавить 6 и полученную сумму разделить на 6. В результате деления оставляем только целое число.

Пример. Определить номер зоны Гаусса для точки, имеющей восточную долготу 18º10".
Решение. К целому числу градусов долготы 18 прибавляем 6 и сумму делим на 6
(18 + 6) / 6 = 4.
Наша карта находится в четвертой зоне.

Затруднения при использовании зональной системы координат возникают в тех случаях, когда топографо-геодезические работы проводятся на приграничных участках, расположенных в двух соседних (смежных) зонах. Координатные линии таких зон располагаются под углом друг к другу (рис 4.3).

Для ликвидации возникающих осложнений введена полоса перекрытия зон , в которой координаты точек могут быть вычислены в двух смежных системах. Ширина полосы перекрытия 4°, по 2° в каждой зоне.

Дополнительная сетка на карте наносится лишь в виде выходов ее линий между минутной и внешней рамками. Оцифровка ее является продолжением оцифровки линий сетки смежной зоны. Линии дополнительной сетки подписывают за внешней рамкой листа . Следовательно, на листе карты, расположенном в восточной зоне, при соединении одноименных выходов дополнительной сетки получают километровую сетку западной зоны. Пользуясь этой сеткой, можно определить, например, прямоугольные координаты точки В в системе прямоугольных координат западной зоны, т. е. прямоугольные координаты точек А и В будут получены в одной системе координат западной зоны.

Рис. 4.3. Дополнительные километровые линии на границе зон

На карте масштаба 1:10 000 дополнительная сетка разбивается только на тех листах, у которых восточный или западный меридиан внутренней рамки (рамки трапеции) является границей зоны. На топографических планах дополнительная сетка не наносится.

4.3. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ С ПОМОЩЬЮ ЦИРКУЛЯ-ИЗМЕРИТЕЛЯ

Важным элементом топографической карты (плана) является прямоугольная сетка. На все листы данной 6-градусной зоны сетку наносят в виде рядов линий, параллельных осевому меридиану и экватору (рис. 4.2). Вертикальные линии сетки параллельны осевому меридиану зоны, а горизонтальные - экватору. Счет горизонтальных километровых линий ведется снизу вверх, а вертикальных - слева направо .

Интервалы между линиями на картах масштабов 1:200 000 - 1:50 000 составляют 2 см, 1:25 000 - 4 см, 1:10 000 - 10 см, что соответствует целому числу километров на местности. Поэтому прямоугольную сетку называют еще километровой , а ее линии - километровыми .
Километровые линии, ближайшие к углам рамки листа карты, подписывают полным числом километров, остальные - двумя последними цифрами. Надпись 60 65 (см. рис. 4.4) на одной из горизонтальных линий означает, что эта линия удалена oт экватора на 6065 км (к северу): надпись 43 07 у вертикальной линии означает, что она находится в четвертой зоне и удалена от начала счета ординат к востоку на 307 км. Если около вертикальной километровой линии записано трехзначное число мелкими цифрами, две первые обозначают номер зоны .

Пример. Надо определить по карте прямоугольные координаты точки местности, например, пункта государственной геодезической сети (ГГС) с отметкой 214,3 (рис. 4.4). Сначала записывают (в километрах) абсциссу южной стороны квадрата, в котором находится эта точка (т. е. 6065). Затем с помощью циркуля-измерителя и линейного масштаба определяют длину перпендикуляра Δх = 550 м , опушенного из заданной точки на эту линию. Полученную величину (в данном случае 550 м) добавляют к абсциссе линии. Число 6 065 550 есть абсцисса х пункта ГГС.
Ордината пункта ГГС равна ординате западной стороны того же квадрата (4307 км), сложенной с длиной перпендикуляра Δу = 250 м, измеренного по карте. Число 4 307 250 есть ордината того же пункта.
При отсутствии циркуля-измерителя расстояния измеряют линейкой или полоской бумаги .

х = 6065550, у = 4307250
Рис. 4.4. Определение прямоугольных координат с помощью линейного масштаба

4.4. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ С ПОМОЩЬЮ КООРДИНАТОМЕРА

Координатомер - небольшой угольник с двумя перпендикулярными сторонами. По внутренним ребрам линеек нанесены шкалы, длины которых равны длине стороны координатных клеток карты данного масштаба. Деления на координатомер переносят с линейного масштаба карты.
Горизонтальная шкала совмещается с нижней линией квадрата (в котором находится точка), а вертикальная шкала должна проходить через данную точку. По шкалам определяют расстояния от точки до километровых линий.


х А = 6135 350 у А = 5577 710
Рис. 4.5. Определение прямоугольных координат с помощью координатомера

4.5. НАНЕСЕНИЕ НА КАРТУ ТОЧЕК ПО ЗАДАННЫМ ПРЯМОУГОЛЬНЫМ КООРДИНАТАМ

Чтобы нанести на карту точку по заданным прямоугольным координатам, поступают следующим образом: в записи координат находят двузначные числа, которыми сокращенно обозначены линии прямоугольной сетки. По первому числу находят на карте горизонтальную линию сетки, по второму - вертикальную. Их пересечение образует юго-западный угол квадрата, в котором лежит искомая точка. На восточной и западной сторонах квадрата откладывают от его южной стороны два равных отрезка, соответствующих в масштабе карты числу метров в абсциссе х . Концы отрезков соединяют прямой линией и на ней от западной стороны квадрата откладывают в масштабе карты отрезок, соответствующий числу метров в ординате; конец этого отрезка является искомой точкой.

4.6. ВЫЧИСЛЕНИЕ ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА ПО ГЕОГРАФИЧЕСКИМ КООРДИНАТАМ

Плоские прямоугольные координаты Гаусса х и у весьма сложно связаны с географическими координатами φ (широта) и λ (долгота) точек земной поверхности. Предположим, что некоторая точка А имеет географические координаты φ и λ . Поскольку разность долгот граничных меридианов зоны равна 6°, то соответственно для каждой из зон можно получить долготы крайних меридианов: 1-я зона (0° - 6°), 2-я зона (6° - 12°), 3-я зона (12° - 18°) и т.д. Таким образом, по географической долготе точки А можно определить номер зоны, в которой эта точка находится. При этом долгота λ ос осевого меридиана зоны определится по формуле
λ ос = (6°n - 3°),
в которой n - номер зоны.

Для определения плоских прямоугольных координат х и у по географическим координатам φ и λ воспользуемся формулами, выведенными для референц-эллипсоида Красовского (референц-эллипсоид - фигура, максимально приближенная к фигуре Земли в той ее части, на которой находится данное государство, либо группа государств):

х = 6367558,4969 (φ рад ) − {a 0 − l 2 N}sin φ cos φ (4.1)
у (l) = lNcos φ (4.2)

В формулах (4.1) и (4.2) приняты следующие обозначения:
у(l) - расстояние от точки до осевого меридиана зоны;
l = (λ - λ ос ) - разность долгот определяемой точки и осевого меридиана зоны);
φ рад - широта точки, выраженная в радианной мере;
N = 6399698,902 - cos 2 φ;
а 0 = 32140,404 - cos 2 φ;
а 3 = (0,3333333 + 0,001123 cos 2 φ) cos 2 φ - 0,1666667;
а 4 = (0,25 + 0,00252 cos 2 φ) cos 2 φ - 0,04166;
а 5 = 0,0083 - cos 2 φ;
а 6 = (0,166 cos 2 φ - 0,084) cos 2 φ.
у" - расстояние от осевого меридиана отнесенного западнее 500 км.

По формуле (4.1) значение координаты у(l) получают относительно осевого меридиана зоны, т.е. оно может получиться со знаками «плюс» для восточной части зоны или «минус» - для западной части зоны. Для записи координаты y в зональной системе координат необходимо вычислить расстояние до точки от осевого меридиана зоны, отнесенного западнее на 500 км"в таблице) , а впереди полученного значения приписать номер зоны. Например, получено значение
у(l) = -303678,774 м в 47 зоне.
Тогда
у = 47 (500000,000 - 303678,774) = 47196321,226 м.
Для вычислений используем электронные таблицы MicrosoftXL .

Пример . Вычислить прямоугольные координаты точки, имеющей географические координаты:
φ = 47º02"15,0543" с.ш.; λ = 65º01"38,2456" в.д.

В таблицу MicrosoftXL вводим исходные данные и формулы (таб. 4.1).

Таблица 4.1.

D

E

F

Параметр

Вычисления

Град

φ (град)

D2+E2/60+F2/3600

φ (рад)

РАДИАНЫ(C3)

Cos 2 φ

№ зоны

ЦЕЛОЕ((D8+6)/6)

λос (град)

l (град)

D11+E11/60+F11/3600

l (рад)

РАДИАНЫ(C12)

6399698,902-((21562,267-
(108,973-0,612*C6^2)*C6^2))*C6^2

а 0

32140,404-((135,3302-
(0,7092-0,004*C6^2)*C6^2))*C6^2

а 4

=(0,25+0,00252*C6^2)*C6^2-0,04166

а 6

=(0,166*C6^2-0,084)*C6^2

а 3

=(0,3333333+0,001123*C6^2)*C6^2-0,1666667

а 5

0,0083-((0,1667-(0,1968+0,004*C6^2)*C6^2))*C6^2

6367558,4969*C4-(((C15-(((0,5+(C16+C17*C20)*C20))

*C20*C14)))*C5*C6)

=((1+(C18+C19*C20)*C20))*C13*C14*C6

ОКРУГЛ((500000+C23);3)

СЦЕПИТЬ(C9;C24)


Вид таблицы после вычислений (таб. 4.2).

Таблица 4.2.

Параметр

Вычисления

Град

φ (град, мин, сек)

φ (градусы)

φ (радианы)

Cos 2 φ

λ (град, мин, сек)

Номер зоны

λос (град)

l (мин, сек)

l (градусы)

l (радианы)

а 0

а 4

а 6

а 3

а 5


4.7. ВЫЧИСЛЕНИЕ ГЕОГРАФИЧЕСКИХ КООРДИНАТ ПО ПЛОСКИМ ПРЯМОУГОЛЬНЫМ КООРДИНАТАМ ГАУССА

Для решения данной задачи также используются формулы пересчета, полученные для референц-эллипсоида Красовского.
Предположим, что нам необходимо вычислить географические координаты φ и λ точки А по ее плоским прямоугольным координатам х и у , заданным в зональной системе координат. При этом значение координаты у записано с указанием номера зоны и с учетом переноса осевого меридиана зоны западнее на 500 км.
Предварительно по значению у находят номер зоны, в которой расположена определяемая точка, по номеру зоны определяют долготу λ o осевого меридиана и по расстоянию от точки до отнесенного на запад осевого меридиана находят расстояние у(l) от точки до осевого меридиана зоны (последнее может быть со знаком плюс или минус).
Значения географических координат φ и λ по плоским прямоугольным координатам х и у находят по формулам:
φ = φ х - z 2 b 2 ρ″ (4.3)
λ = λ 0 + l (4.4)
l = zρ″ (4.5)

В формулах (4.3) и (4.5) :
φ х ″= β″ +{50221746 + cos 2 β}10-10sinβcosβ ρ″;
β″ = (Х / 6367558,4969) ρ″; ρ″ = 206264,8062″ - число секунд в одном радиане
z = У(L) / (Nx сos φx);
N х = 6399698,902 - cos 2 φ х;
b 2 = (0,5 + 0,003369 cos 2 φ х) sin φ х cos φ х;
b 3 = 0,333333 - (0,166667 - 0,001123 cos2 φ х) cos2 φ х;
b 4 = 0,25 + (0,16161 + 0,00562 сos 2 φ х) cos 2 φ х;
b 5 = 0,2 - (0,1667 - 0,0088 сos 2 φ х) cos 2 φ х.

Для вычислений используем электронные таблицы MicrosoftXL .
Пример . Вычислить географические координаты точки по прямоугольным:
x = 5213504,619; y = 11654079,966.

В таблицу MicrosoftXL вводим исходные данные и формулы (таб. 4.3).

Таблица 4.3.

1

Параметр

Вычисление

Град.

Мин.

Сек.

2

1

х

5213504,619

2

у

11654079,966

4

3

№*зоны

ЕСЛИ(C3<1000000;
C3/100000;C3/1000000)

5

4

№ зоны

ЦЕЛОЕ(C4)

6

5

λоос

C5*6-3

7

6

у"

C3-C5*1000000

8

7

у(l)

C7-500000

9

8

ρ″

206264,8062

10

9

β"

C2/6367558,4969*C9

11

10

β рад

РАДИАНЫ(C10/3600)

12

11

β

ЦЕЛОЕ
(C10/3600)

ЦЕЛОЕ
((C10-D12*3600)/60)

C10-D12*
3600-E12*60

13

12

Sin β

SIN(C11)

14

13

Cos β

COS(C11)

15

14

Cos 2 β

C14^2

16

15

φ х "

C10+(((50221746+((293622+
(2350+22*C14^2)*C14^2))*C14^2)))
*10^-10*C13*C14*C9

17

16

φ х рад

РАДИАНЫ(C16/3600)

18

17

φ х

ЦЕЛОЕ
(C16/3600)

ЦЕЛОЕ
((C16-D18*3600)/60)

C16-D18*
3600-E18*60

19

18

Sin φ.

SIN(C17)

20

19

Cos φ х

COS(C17)

21

20

Cos 2 φ х

C20^2

22

21

N х

6399698,902-((21562,267-
(108,973-0,612*C21)*C21))*C21

23

22

Ν х Cosφ х

C22*C20

24

23

z

C8/(C22*C20)

25

24

z 2

C24^2

26

25

b 4

0,25+(0,16161+0,00562*C21)*C21

27

26

b 2

=(0,5+0,003369*C21)*C19*C20

28

27

b 3

0,333333-(0,166667-0,001123*C21)*C21

29

28

b 5

0,2-(0,1667-0,0088*C21)*C21

30

29

C16-((1-(C26-0,12
*C25)*C25))*C25*C27*C9

31

30

φ

=ЦЕЛОЕ
(C30/3600)

=ЦЕЛОЕ
((C30-D31*3600)/60)

=C30-D31*
3600-E31*60

32

31

l"

=((1-(C28-C29*C25)*C25))*C24*C9

33

32

l 0

=ЦЕЛОЕ
(C32/3600)

=ЦЕЛОЕ
((C32-D33*3600)/60)

=C32-D33*
3600-E33*60

34

33

λ

C6+D33


Вид таблицы после вычислений (таб. 4.4).

Таблица 4.4.

Параметр

Вычисление

Град.

Номер зоны *

Номер зоны

λоос (град)

у"

β рад

Cos 2 β

φ х "

φ х рад

φ х

Cos φ х

Cos 2 φ х

N х

Ν х Cos φ х

z 2

b 4

b 2

b 3

b 5

φ

l 0

λ

Если вычисления произведены верно, копируем обе таблицы на один лист, скрываем строки промежуточных вычислений и колонку № п/п, а оставляем только строки ввода исходных данных и результатов вычислений. Форматируем таблицу и корректируем названия колонок и столбцов по вашему усмотрению.

Рабочие таблицы могут выглядеть так

Таблица 4.5.


Примечания .
1. В зависимости от требуемой точности можно увеличить или уменьшить разрядность.
2. Количество строк в таблице можно сократить, объединив вычисления. Например, радианы угла не вычислять отдельно, а сразу записать в формулу =SIN(РАДИАНЫ(C3)).
3. Округление в п. 23 табл. 4.1. производим для «сцепления». Число разрядов в округлении 3.
4. Если не изменить формат ячеек в колонках «Град» и «Мин», то нулей перед цифрами не будет. Изменение формата здесь выполнено только для зрительного восприятия (по решению автора) и на результаты вычислений не влияет.
5. Чтобы случайно не повредить формулы, следует защитить таблицу: Сервис / Защитить лист. Перед защитой выделить ячейки для ввода исходных данных, а затем: Формат ячеек / Защита / Защищенная ячейка - убрать галочку.

4.8. СВЯЗЬ ПЛОСКОЙ ПРЯМОУГОЛЬНОЙ И ПОЛЯРНОЙ СИСТЕМ КООРДИНАТ

Простота полярной системы координат и возможность ее построения относительно любой точки местности, принимаемой за полюс, обусловили ее широкое применение в топографии. Чтобы связать воедино полярные системы отдельных точек местности, необходимо перейти к определению положения последних в прямоугольной системе координат, которая может быть распространена на значительно большую по площади территорию. Связь между двумя системами устанавливается решением прямой и обратной геодезических задач.
Прямая геодезическая задача состоит в определении координат конечной точки В (рис. 4.4) линии АВ по длине ее горизонтального проложения d , направлению α и координатам начальной точки х А , у А .


Рис. 4.6. Решение прямой и обратной геодезических задач

Так, если принять точку А (рис. 4.4) за полюс полярной системы координат, а прямую АВ - за полярную ось, параллельную оси ОХ , то полярными координатами точки В будут d и α . Необходимо вычислить прямоугольные координаты этой точки в системе ХОУ.

Из рис. 3.4 видно, что х В отличается от х А на величину (х В - х А ) = Δх АВ , а у В отличается от у А на величину (у В - у А ) = Δу АВ . Разности координат конечной В и начальной А точек линии АВ Δх и Δу называют приращениями координат . Приращениями координат являются ортогональные проекции линии АВ на оси координат. Координаты х В и у В могут быть вычислены по формулам:

х В = х А + Δх АВ (4.1)
у В = у А + Δу АВ (4.2)

Значения приращений определяют из прямоугольного треугольника АСВ по заданным d и α, так как приращения Δх и Δу являются катетами этого прямоугольного треугольника:

Δх АВ =d cos α (4.3)
Δу АВ = d sin α (4.4)

Знак приращений координат зависит от угла положения.

Таблица 4.1.

Подставив значение приращений Δх АВ и Δу АВ в формулы (3.1 и 3.2), получим формулы для решения прямой геодезической задачи:

х В = х А + d cos α (4.5)
у В = у А + d sin α (4.6)

Обратная геодезическая задача заключается в определении длины горизонтального проложения d и направления α линии АВ по данным координатам ее начальной точки А (хА, уА) и конечной В (хВ, уВ). Угол направления вычисляется по катетам прямоугольного треугольника:

tg α = (4.7)

Горизонтальное проложение d , определяют по формуле:

d = (4.8)

Для решения прямой и обратной геодезической задачи можно воспользоваться электронными таблицами Microsoft Excel .

Пример .
Задана точка А с координатами: х А = 6068318,25; у А = 4313450,37. Горизонтальное проложение (d) между точкой А и точкой В равно 5248,36 м. Угол между северным направлением оси ОХ и направлением на точку В (угол положения - α ) равен 30º.

Рассчитать прямоугольные координаты точки В (х В , у В ).

Вводим исходные данные и формулы в электронные таблицы Microsoft Excel (таб. 4.2).

Таблица 4.2.

Исходные данные

х А

у А

Вычисления

Δх АВ = d cos α

B4*COS(РАДИАНЫ(B5))

Δу АВ = d sin α

B4*SIN(РАДИАНЫ(B5))

х В

у В


Вид таблицы после вычислений (таб. 4.3) .

Таблица 4.3.

Исходные данные

х А

у А

Вычисления

Δх АВ = d cos α

Δу АВ = d sin α

х В

у В

Пример .
Заданы точки А и В с координатами:
х А = 6068318,25; у А = 4313450,37;
х В = 6072863,46; у В = 4313450,37.
Рассчитать горизонтальное проложение d между точкой А и точкой В, а также угол α между северным направлением оси ОХ и направлением на точку В .
Вводим исходные данные и формулы в электронные таблицы Microsoft Excel (таб. 4.4).

Таблица 4.4.

Исходные данные

х А

у А

х В

у В

Вычисления

Δх АВ

Δу АВ

КОРЕНЬ(B7^2+B8^2)

Тангенс

Арктангенс

Градусы

ГРАДУСЫ(B11)

Выбор

ЕСЛИ(B12<0;B12+180;B12)

Угол положения (град)

ЕСЛИ(B8<0;B13+180;B13)

Вид таблицы после вычислений (таб. 4.5).

Таблица 4.5.

Исходные данные

х А

у А

х В

у В

Вычисления

Δх АВ

Δу АВ

Тангенс

Арктангенс

Градусы

Выбор

Угол положения (град)

Если ваши вычисления совпали с вычислениями учебного пособия, скройте промежуточные расчеты, отформатируйте и защитите таблицу.

Видео
Прямоугольные координаты

Вопросы и задания для самоконтроля

  1. Какие величины называют прямоугольными координатами?
  2. На какой поверхности применяют прямоугольные координаты?
  3. В чем заключается суть зональной системы прямоугольных координат?
  4. Назовите номер шестиградусной зоны, в которой находится г. Луганск с координатами: 48°35′ с.ш. 39°20′ в.д.
  5. Рассчитайте долготу осевого меридиана шестиградусной зоны, в которой находится г. Луганск.
  6. Как ведется счет координат х и у в прямоугольной системе координат Гаусса?
  7. Объясните порядок определения прямоугольных координат на топографической карте с помощью циркуля-измерителя.
  8. Объясните порядок определения прямоугольных координат на топографической карте с помощью координатомера.
  9. В чем сущность прямой геодезической задачи?
  10. В чем сущность обратной геодезической задачи?
  11. Какую величину называют приращением координат?
  12. Дайте определения синуса, косинуса, тангенса и котангенса угла.
  13. Как можно применить в топографии теорему Пифагора о соотношении между сторонами прямоугольного треугольника?

Тема №2: Подготовка карты к работе, измерение по карте. Определение координат и целеуказание.

Занятие №2 Измерения на карте.

Вопрос 1: Плоские прямоугольные координаты на картах, определение прямоугольных координат на карте, нанесение объектов на карту.

Прямоугольные координаты (плоские) - линейные величины (абсцисса Х и ордината У), определяющие положение точки на плоскости (карте) относительно двух взаимно перпендикулярных осей Х и У. Абсцисса Х и ордината V точки Л - расстояния от начала координат до оснований перпендикуляров, опущенных из точки А на соответствующие оси, с указанием знака.

В топографии и геодезии ориентирование производится по северу со счетом углов по ходу часовой стрелки. Поэтому для сохранения знаков тригонометрических функций положение осей координат, принятое в математике, повернуто на 90° (за ось Х принята вертикальная линия, за ось У-горизонтальная).

Прямоугольные координаты (Гаусса) на топографических картах применяются по координатным зонам на которые делится поверхность Земли при изображении ее на картах в Проекции Гаусса (см. п.1.4). Координатные зоны - части земной поверхности, ограниченные меридианами с долготой, кратной 6°.

Рис. 4. Система прямоугольных координат на топографических картах:

a - одной зоны; б - части зоны

Счет зон идет от Гринвичского меридиана с запада на восток. Первая зона ограничена меридианами 0 и 6°, вторая - 6 и 12°, третья -12 и 18° и т. д. Территория СССР располагается -в 29 зонах (от 4-й до 32-й включительно). Протяженность каждой зоны с севера на юг составляет примерно 20000 км. Ширина зоны на экваторе равна примерно 670 км, на широте 40°- 510, на широте 50°-430, на широте 60°-340 км.

Все топографические карты в пределах одной зоны имеют общую систему прямоугольных координат. Началом координат в каждой зоне служит точка пересечения среднего (осевого) меридиана зоны с экватором (рис. 15), средний меридиан зоны соответствует оси абсцисс (X), а экватор-оси ординат (У). При таком расположении координатных осей абсциссы точек, расположенных южнее экватора, и ординаты точек, расположенных западнее среднего меридиана, будут иметь отрицательные значения. Для удобства пользования координатами на топографических картах принят условный счет ординат, исключающий отрицательные значения координаты У. Это вызвано тем, что отсчет ординат идет не от нуля, а от величины 500 км, т. е. начало координат в каждой зоне как бы перенесено на 500 км влево вдоль оси «У». Кроме того, для однозначного определения положения точки по прямоугольным координатам на земном шаре к значению координаты у слева приписывается номер зоны (однозначное или двузначное число). Если, например, точка имеет координаты х =5 650 450; у =3620840, то это значит, что она расположена в третьей зоне на удалении 120 км 840 м (620840-500000) к востоку от среднего меридиана зоны и на удалении 5650 км 450 м к северу от экватора.

Полные координаты - прямоугольные координаты, указанные полностью, без каких-либо сокращений. В примере, приведенном выше, даны полные координаты точки.

Сокращенные координаты применяются для ускорения целеуказания по топографической карте. В этом случае указывают только десятки и единицы километров и метры, например, х = 50450; у = 20840.

Сокращенные координаты нельзя применять, если район действий охватывает пространство протяженностью более 100 км по широте или долготе.

Координатная (километровая) сетка (рис. 16) - сетка квадратов на топографических картах, образованная горизонтальными и вертикальными линиями, проведенными параллельно -осям прямоугольных координат через определенные интервалы; на карте масштаба 1: 25 000 - через 4 см, на картах масштабов 1:50000, 1:100 000 и 1:200 000 - через 2 см. Эти линии называются километровыми.

На карте масштаба 1:500 000 координатная сетка полностью не показывается, наносятся только выходы километровых линий по сторонам рамки через 2 см. При необходимости, по этим выходам координатная сетка может быть прочерчена на карте.

Координатная сетка используется для определения прямоугольных координат и нанесения на карту точек, объектов, целей по их координатам, для целеуказания и отыскания на карте различных объектов (пунктов), для ориентирования карты на местности, измерения дирекционных углов, приближенного определения расстояний и площадей.

Рис. 16. Координатная (километровая) сетка на топографических

картах различных масштабов

Километровые линии на картах подписываются у их выходов за рамкой листа и в девяти местах внутри листа карты. Ближайшие к углам рамки километровые линии, а также ближайшее к северо-западному углу пересечение линий подписываются полностью, остальные сокращенно, двумя цифрами (указываются только десятки и единицы километров). Подписи у горизонтальных линий соответствуют расстояниям от оси ординат (от экватора) в километрах. Например, подпись- 6082 в правом верхнем углу (рис. 17) показывает, что данная линия отстоя от экватора на удалении 6082 км

Подписи у вертикальных линий обозначают номер зоны (одна или две первые цифры) в расстояние в километрах (всегда три цифры) от начала координат, условно перенесенного к западу от среднего меридиана на 500 км. Например, подпись 4308 в левом верхнем углу означает: 4 - номер зоны, 308 - расстояние от условного начала координат в километрах.

Рис.17. Дополнительная координатная сетка

Дополнительная координатная (километровая) сетка предназначается для преобразования координат одной зоны в систему координат другой, соседней зоны. Она может быть нанесена на топографических картах масштабов 1:25 000, 1:50 000, 1:100 000 и 1:200 000 по выходам километровых линий в смежной западной или восточной зоне Выходы километровых линий в виде черточек с соответствующими подписями даются на картах, расположенных на протяжении 2° к востоку и западу от граничных меридианов зоны.

На рис. 17 черточки на внешней стороне западной рамки с подписями 816082 и на северной стороне рамки с подписями 369394 и т д обозначают выходы километровых линий в системе координат смежной (третьей) зоны. При необходимости дополнительная координатная сетка прочерчивается на листе карты путем соединения одноименных черточек на противоположных сторонах рамки. Вновь построенная сетка является продолжением километровой сетки листа карты смежной зоны и должна полностью совпадать (смыкаться) с ней при склейке карты.

Определение прямоугольных координат точек по карте.

Вначале измеряют по перпендикуляру расстояние от точки до нижней километровой линии, по масштабу определяют "его действительную величину в метрах и приписывают справа к подписи километровой линии. При длине отрезка более километра вначале суммируют километры, а затем также приписывают число метров справа. Это будет координата х (абсцисса).

Таким же образом определяют и координату у (ординату), только расстояние от точки измеряют до левой стороны квадрата.

Пример определения координат точки А показан на рис 18- х = 5 877 100. у = 3 302 700

Здесь же дан пример определения координат точки В, расположенной у рамки листа карты в неполном квадрате- х == 5 874 850, у = 3 298 800

Измерения выполняют циркулем-измерителем, линейкой или координатомером. Простейшим координатомером служит офицерская линейка, на двух взаимно перпендикулярных краях, которой имеются миллиметровые деления и надписи х и у.

При определении координат координатомер накладывают на квадрат, в котором располагается точка, и, совместив вертикальную шкалу с его левой стороной, а горизонтальную--с точкой, как показано на рис 18, снимают отсчеты.

Отсчеты - в миллиметрах (десятые миллиметра отсчитывают на глаз) в соответствии с масштабом карты преобразуют в действительные величины - километры и метры, а затем величину, полученною по вертикальной шкале, суммируют (если она больше километра) с оцифровкой нижней стороны квадрата или приписывают к ней справа (если величина меньше километра). Это будет координата х точки.

Таким же образом получают и координату у величину, соответствующую отсчету по горизонтальной шкале, только суммирование производят с оцифровкой левой стороны квадрата.

На рис. 18 показан пример определения прямоугольных координат точки С: х = 5 873 300; у "3300 800.

Нанесение точек на карту по прямоугольным координатам. Прежде всего по координатам в километрах и оцифровкам километровых линий находят на карте квадрат, в котором должна быть расположена точка.

Квадрат местонахождения точки на карте масштаба 1:50 000, где километровые линии проведены через 1 км, находят непосредственно по координатам объекта в километрах. На карте масштаба 1:100000 километровые линии проведены через 2 км и подписаны четными числами, поэтому если одна или две координаты точки в километрах нечетные числа, то нужно находить квадрат, стороны которого подписаны числами на единицу меньше соответствующей координаты в километрах.

На карте масштаба 1:200 000 километровые линии проведены через 4 км и подписаны числами, кратными 4. Они могут быть меньше соответствующей координаты точки на 1,2 или 3 км. Например, если даны координаты точки (в километрах) х= 6755 и у = 4613, то стороны квадрата будут иметь оцифровки 6752 и 4612.

После нахождения квадрата, в котором расположена точка, рассчитывают ее удаление от нижней стороны квадрата и полученное расстояние откладывают в масштабе карты от нижних углов квадрата вверх. К полученным точкам прикладывают линейку и от левой стороны квадрата также в масштабе карты откладывают расстояние, равное удалению объекта от этой стороны.

На рис. 19 показан пример нанесения на карту точки Л по координатам х == 3 768 850, у = 29 457 500.

При работе с координатомером вначале также находят квадрат, в котором расположена точка. На этот квадрат накладывают координатомер, совмещают его вертикальную шкалу с западной стороной квадрата так, чтобы против нижней стороны квадрата был отсчет, соответствующий координате х. Затем, не изменяя положения координатомера, находят на горизонтальной шкале отсчет, соответствующий координате у. Точка против отсчета покажет ее местоположение, соответствующее данным координатам.

На рис. 19 показан пример нанесения на карту точки В, расположенной в неполном квадрате, по координатам ж =3 765 500; у =29 457 650.

Рис.19

В данном случае координатомер наложен так, что горизонтальная шкала его совмещена с северной стороной квадрата, а отсчет против западной его стороны соответствует разности координаты у точки и оцифровки этой стороны (29457 км 650 м-29456 км==1 км 650 м). Отсчет, соответствующий разности (шифровки северной стороны квадрата и координаты х (Э766 км - 3765 км 500 м), отложен по вертикальной шкале вниз. Местоположение точки В будет против штриха у отсчета 500 м.

Пойдем прямым логическим путем, не отвлекаясь на многие современные международные и отечественные научные термины. Систему координат можно изобразить как некую систему отсчета ориентированную на плоскости двумя направлениями, а в пространстве тремя. Если вспомнить математическую систему, то она представлена двумя взаимно перпендикулярными направлениями, имеющими названия осей абсцисс (X) и ординат (Y). Ориентированы они в горизонтальном и вертикальном направлениях соответственно. Пересечение этих линий является началом координат с нулевыми значениями в абсолютной величине. А местоположение точек на плоскости определяется при помощи двух координат X и Y. В геодезии ориентирование осей на плоскости отличается от математики. Плоскостная прямоугольная система определена осью X в вертикальном положении (в направлении на север) и осью Y в горизонтальном (в направлении на восток).

Классификация систем координат

К полярным системам можно отнести географическую, астрономическую и геодезическую, геоцентрические и топоцентрические системы.

Географическая система координат

Замкнутая поверхность внешнего контура Земли представлена сфероидной геометрической формой. За основные направления ориентирования на ней можно принять дуги на поверхности шара. На упрощенно представленном уменьшенном макете нашей планеты в виде глобуса (фигура земли) можно зрительно увидеть принятые линии отсчета в виде Гринвичского меридиана и экваториальной линии.

В этом примере выражена общепринятая во всем мире именно пространственная система географических координат. В ней введены понятия долготы и широты. Имея градусные единицы измерения, они представляют угловую величину. Многим знакомы их определения. Следует напомнить, что географическая долгота конкретной точки представляет угол между двумя плоскостями, проходящими через нулевой (Гринвичский) меридиан и меридиан в определяемой точке расположения. Под географической широтой точки принят угол, образующийся между отвесной линией (или нормалью) к ней и плоскостью экватора.

Понятия астрономической и геодезической системы координат и их различия

Географическая система условно объединяет астрономическую и геодезическую системы. Для того чтобы было понятно какие все-таки существуют различия обратите внимание на определения геодезических и астрономических координат (долготы, широты, высоты). В астрономической системе широта рассматривается как угол между экваториальной плоскостью и отвесной линией в точке определения. А сама форма Земли в ней рассматривается как условный геоид, математически приближенно приравненный к сфере. В геодезической системе широта образовывается нормалью к поверхности земного эллипсоида в конкретной точке и плоскостью экватора. Третьи координаты в этих системах дают окончательное представление в их различиях. Астрономическая (ортометрическая) высота представляет собой превышение по отвесной линии между фактической и точкой на поверхности уровенного геоида. Геодезической высотой считается расстояние по нормали от поверхности эллипсоида до точки вычисления.

Система плоских прямоугольных систем координат Гаусса-Крюгера

Каждая система координат имеет свое теоретическое научное и практическое экономическое применение, как в глобальном, так и региональном масштабах. В некоторых конкретных случаях возможно использование референцных, местных и условных систем координат, но которые через математические расчеты и вычисления все равно могут быть объединены между собой.

Геодезическая прямоугольная плоская система координат является проекцией отдельных шестиградусных зон эллипсоида. Вписав эту фигуру внутрь горизонтально расположенного цилиндра, каждая зона отдельно проецируется на внутреннюю цилиндрическую поверхность. Зоны такого сфероида ограничиваются меридианами с шагом в шесть градусов. При развертывании на плоскости получается проекция, которая имеет название в честь немецких ученых её разработавших Гаусса-Крюгера. В таком способе проецирования углы между любыми направлениями сохраняют свои величины. Поэтому иногда ее называют еще равноугольной. Ось абсцисс в зоне проходит по центру, через условный осевой меридиан (ось X), а ось ординат по линии экватора (ось Y). Длины линий вдоль осевого меридиана передается без искажений, а вдоль экваториальной линии с искажениями к краям зоны.

Полярная система координат

Кроме выше описанной прямоугольной системы координат следует отметить наличие и использование в решении геодезических задач плоской полярной системы координат. За исходное отсчетное направление в ней применяется ось северного (полярного) направления, откуда и название. Для определения местоположения точек на плоскости используют полярный (дирекционный) угол и радиус-вектор (горизонтальное проложение) до точки. Напомним, что дирекционным углом считается угол, отсчитываемый от исходного (северного) направления до определяемого. Радиус-вектор выражается в определении горизонтального проложения. К пространственной полярной системе добавляется геодезические измерения вертикального угла и наклонного расстояния для определения 3D-положения точек. Этот способ практически ежедневно применяется в тригонометрическом нивелировании , топографической съемке и для развития геодезических сетей .

Геоцентрические и топоцентрические системы координат

По такому же полярному методу частично устроены и спутниковые геоцентрическая и топоцентрическая системы координат, с той лишь разницей, что основные оси трехмерного пространства (X, Y, Z) имеют отличные начала и направления. В геоцентрической системе началом координат является центр масс Земли. Ось X имеет направление по Гринвичскому меридиану к экватору. Ось Y располагают в прямоугольном положении на восток от X. Ось Z изначально имеет полярное направление по малой оси эллипсоида. Координатами в ней считаются:

  • в экваториальной плоскости геоцентрическое прямое восхождение спутника
  • в меридианной плоскости геоцентрическое склонение спутника
  • геоцентрический радиус-вектор расстояние от центра тяжести Земли до спутника.

При наблюдении за движением спутников из точки стояния на земной поверхности используют топоцентрическую систему, оси координат которой расположены параллельно осям геоцентрической системы, а ее началом считается пункт наблюдения. Координаты в такой системе:

  • топоцентрическое прямое восхождение спутника
  • топоцентрическое склонение спутника
  • топоцентрический радиус-вектор спутника
  • геоцентрический радиус вектор в точке наблюдений.

В современные спутниковые глобальные системы отсчета WGS-84 , ПЗ-90 входят не только координаты, но и другие параметры и характеристики важные для геодезических измерений, наблюдений и навигации. К ним относятся геодезические и другие константы:

  • исходные геодезические даты
  • данные земного эллипсоида
  • модель геоида
  • модель гравитационного поля
  • значения величины гравитационной постоянной
  • значение скорости света и другие.