Для удаления аммиака есть два способа. Синтез мочевины, орнитиновый цикл

Большая часть свободного аммиака, а также аминного азота в составе АК (в основном глутамин, аланин) поступают в печень, где из них синтезируется нетоксичное и хорошо растворимое в воде соединение - мочевина. Мочевина является основной формой выведения азота из организма человека.

Синтез мочевины происходит в цикле, который замыкается орнитином. Цикл открыли в 40-х годах XX века немецкие биохимики Г. Кребс и К. Гензелейт.

Мочевина (карбамид) - полный амид угольной кислоты - содержит 2 атома азота, один из аммиака, другой – из асп.

Реакции орнитинового цикла

Предварительно в митохондриях под действием карбамоилфосфатсинтетазы I с затратой 2 АТФ аммиак связывается с СО2 с образованием карбамоилфосфата:

(Карбамоилфосфатсинтетаза II локализована в цитозоле клеток всех тканей и участвует в синтезе пиримидиновых нуклеотидов).

1. В митохондриях орнитинкарбамоилтрансфераза переносит карбамоильную группу карбамоилфосфата на орнитин и образуется - цитруллин:

2. В цитозоле аргининосукцинатсинтетаза с затратой 1 АТФ (двух макроэргических связей) связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарная кислота). Фермент нуждается в Mg2+. Аспартат - источник второго атома азота мочевины.


3. В цитозоле аргининосукцинатлиаза (аргининсукциназа) расщепляет аргининосукцинат на аргинин и фумарат (аминогруппа аспартата оказывается в аргинине).


4. В цитозоле аргиназа гидролизует аргинин на орнитин и мочевину. У аргиназы кофакторы ионы Са2+ или Мn2+, ингибиторы - высокие концентрации орнитина и лизина.

Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.

Регенерация аспартата из фумарата

Фумарат, образующийся в орнитиновом цикле, в цитозоле превращается в ЩУК, который переаминируется с аланином или глутаматом с образованием аспартата. Аланин поступает главным образом из мышц и клеток кишечника:


Малат может направиться в митохондрии и включиться в ЦТК.

Пируват, образующийся в этих реакциях из аланина, используется для глюконеогенеза.

Общее уравнение синтеза мочевины:

CO2 + NH3 + асп + 3 АТФ + 2 Н2О → мочевина + фумарат + 2АДФ + АМФ + 2Фн + ФФн


Энергетический баланс орнитинового цикла

На синтез 1 мочевины расходуются 4 макроэргических связи 3 АТФ. Дополнительные затраты энергии связаны с трансмембранным переносом веществ и экскрецией мочевины. Энергозатраты при этом частично компенсируются:

· при окислительном дезаминировании глутамата образуется 1 молекула НАДН2, которая обеспечивает синтез 3 АТФ;

· в ЦТК, при превращении малата в ЩУК образуется еще 1 молекула НАДН2, которая также обеспечивает синтез 3 АТФ;

Орнитиновый цикл в печени выполняет 2 функции:

1. превращение азота АК в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов, главным образом аммиака;

2. синтез аргинина и пополнение его фонда в организме.

Полный набор ферментов орнитинового цикла есть только в гепатоцитах. Отдельные же ферменты орнитинового цикла обнаруживаются в разных тканях. В энтероцитах , есть карбамоилфосфатсинтетаза I и орнитинкарбамоилтрансфераза, следовательно, может синтезироваться цитруллин. В почках есть аргининосукцинатсинтетаза и аргининосукцинатлиаза. Цитруллин, образовавшийся в энтероцитах, может поступать в почки и превращаться там в аргинин, который переносится в печень и гидролизуется аргиназой. Активность этих рассеянных по разным органам ферментов значительно ниже, чем в печени.

Выделение азота из организма

Азот выводиться из организма с мочой, калом, потом и с выдыхаемым воздухом в виде различных соединений. Основная масса азота выделяется из организма с мочой в виде мочевины (до 90%). В норме соотношение азотсодержащих веществ в моче составляет: мочевина 86%, креатинин 5%, аммиак 3%, мочевая кислота 1,5% и другие вещества 4,5%. Экскреция мочевины в норме составляет 25 г/сут, солей аммония 0,5 г/сут.

Конечным продуктом распада белка у живых организмов могут быть аммиак и диамид угольной кислоты или мочевина, которая занимает в обмене грибов совершенно особое и специфичное место. Иллюстрацией процесса биосинтеза мочевины у грибов служит образование ее из аргинина по следующей схеме:

Может она образовываться, например, у дрожжей также из нуклеиновых оснований (рис. 4.4/Di Carlo et al., 1952).


У животных мочевина представляет собой конечный продукт распада белка, выключаемый из обмена, тогда как у грибов она имеет совсем другое значение. Мочевина широко распространена у грибов и обильно накапливается в мицелии, особенно у гименомицетов в период созревания плодовых тел и особенно в их гимении. Обмен мочевины у грибов подробно изучался в многочисленных работах Иванова, относящихся к двадцатым годам нашего века (Иванов, 1928; Иванов и Цветкова, 1936). Особенно большое количество мочевины было им обнаружено в плодовых телах дождевиков: Lycoperdon содержал ее до 10% от сухой массы, Воvista - до 12%, а шампиньоны еще больше. При помещении созревшего плодового тела в атмосферу аммиака количество мочевины в гимении повышалось до 14%. Однако в растворе сахара мочевина исчезала, расщепляясь ферментом уреазой до углекислоты и аммиака, который расходовался затем на синтез аминокислот и протеина, сопровождавшийся ростом плодового тела. Из этого можно было сделать вывод, что мочевина представляет собой у грибов запасное вещество с функцией, аналогичной функции аспарагина и глютамина у высших зеленых растений, у которых количество аспарагина повышается в темноте при отсутствии синтеза углеводов и уменьшается, расходуясь на синтез белка и рост, при новом поступлении углеводов.

Принципиальные различия в азотном обмене у животных, где мочевина является отбросом, у грибов, где она имеет функции запасного продукта, и у растений, где эту функцию несет аспарагин, приведены на рис. 4.5.


Особое значение мочевина имеет в биосинтезе аминокислот аргининового цикла, входящих в состав гистонов, основных белков, играющих ведущую роль в процессах инициации репликации хроматина и стимуляции или репрессии транскрипции рибонуклеиновых кислот. Обмен в этом цикле идет по схеме рис. 4.6.

V. ОБМЕН АММИАКА

А. ИСТОЧНИКИ АММИАКА В КЛЕТКАХ

Катаболизм аминокислот в тканях происходит постоянно со скоростью ∼100 г/сут. При этом в результате дезаминирования аминокислот освобождается большое количество аммиака.

Схема A



Схема Б

Схема В

Значительно меньшие количества его образуются при дезаминировании биогенных аминов и нуклеотидов. Основные источники аммиака в клетках представлены в табл. 9-3.

Часть аммиака образуется в кишечнике в результате действия бактерий на пищевые белки (гниение белков в кишечнике) и поступает в кровь воротной вены. Концентрация аммиака в крови воротной вены существенно больше, чем в общем кровотоке. В печени задерживается большое количество аммиака, что поддерживает низкое содержание его в крови. Концентрация аммиака в крови в норме редко превышает 0,4-0,7 мг/л (или 25-40 мкмоль/л). В крови и цитозоле клеток при физиологических значениях рН аммиак переходит в ион аммония - NH4 + , количество неионизированного NH 3 невелико (~ 1%).

Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС. Так, повышение концентрации аммиака в мозге до 0,6 ммоль вызывает судороги. К симптомам гипераммониемии относят тремор, нечленораздельную речь, тошноту, рвоту, головокружение, судорожные припадки, потерю сознания. В тяжёлых случаях развивается кома с летальным исходом.

Механизм токсического действия аммиака на мозг и организм в целом, очевидно, связан с действием его на несколько функциональных систем.

  • Аммиак легко проникает через мембраны в клетки и в митохондриях сдвигает реакцию, катализируемую глутаматдегидрогеназой, в сторону образования глугамата:

α-Кетоглутарат + NADH + Н + + NH 3 → Глутамат + NAD + .

Уменьшение концентрации α-кетоглутарата вызывает:

  • угнетение обмена аминокислот (реакции транса-минирования) и, следовательно, синтеза из них нейромедиаторов (ацетилхолина, дофамина и др.);
  • гипоэнергетическое состояние в результате снижения скорости ЦТК.

Таблица 9-3. Основные источники аммиака

Источник Процесс Ферменты Локализация процесса
Аминокислоты Непрямое дезаминирование (основной путь дезаминирования аминокислот) Аминотрансферазы, ПФ Глутаматдегидрогеназа, NAD + Все ткани
Окислительное дезаминирование глутамата Глутаматдегидрогеназа, NAD + Все ткани
Неокислительное дезаминирование Гис, Сер, Тре Гистидаза-Серин, треониндегидратазы, ПФ Преимущественно печень
Окислительное дезаминирование аминокислот (малозначимый путь дезаминирования) Оксидаза L-аминокислот, FMN Печень и почки
Биогенные амины Окислительное дезаминирование (путь инактивации биогенных аминов) Аминооксидазы, FAD Все ткани
АМФ Гидролитическое дезаминирование АМФ-дезаминаза Интенсивно работающая мышца

Недостаточность α-кетоглутарата приводит к снижению концентрации метаболитов ЦТК, что вызывает ускорение реакции синтеза оксалоа-цетата из пирувата, сопровождающейся интенсивным потреблением СО 2 . Усиленное образование и потребление диоксида углерода при гипераммониемии особенно характерны для клеток головного мозга.

  • Повышение концентрации аммиака в крови сдвигает рН в щелочную сторону (вызывает алкалоз ). Это, в свою очередь, увеличивает сродство гемоглобина к кислороду, что приводит к гипоксии тканей, накоплению СО 2 и гипоэнергетическому состоянию, от которого главным образом страдает головной мозг.
  • Высокие концентрации аммиака стимулируют синтез глутамина из глутамата в нервной ткани (при участии глутаминсинтетазы):

Глутамат + NH 3 + АТФ → Глутамин + АДФ + Н 3 Р0 4 .

  • Накопление глутамина в клетках нейроглии приводит к повышению осмотического давления в них, набуханию астроцитов и в больших концентрациях может вызвать отёк мозга. Снижение концентрации глутамата нарушает обмен аминокислот и нейромедиаторов, в частности синтез у-аминомасляной кислоты (ГАМК), основного тормозного медиатора. При недостатке ГАМК и других медиаторов нарушается проведение нервного импульса, возникают судороги.
  • Ион NH 4 + практически не проникает через цитоплазматические и митохондриальные мембраны. Избыток иона аммония в крови способен нарушать трансмембранный перенос одновалентных катионов Na + и К + , конкурируя с ними за ионные каналы, что также влияет на проведение нервных импульсов.

Б. Связывание (обезвреживание) аммиака

Высокая интенсивность процессов дезаминирования аминокислот в тканях и очень низкий уровень аммиака в крови свидетельствуют о том, что в клетках активно происходит связывание аммиака с образованием нетоксичных соединений, которые выводятся из организма с мочой. Эти реакции можно считать реакциями обезвреживания аммиака. В разных тканях и органах обнаружено несколько типов таких реакций.

Основной реакцией связывания аммиака, протекающей во всех тканях организма, является

синтез глутамина под действием глутамин-синтетазы:

Глутаминсинтетаза локализована в митохондриях клеток, для работы фермента необходим кофактор - ионы Mg 2+ . Глутаминсинтетаза - один из основных регуляторных ферментов обмена аминокислот и аллостерически ингибируется АМФ, глюкозо-6-фосфатом, а также Гли, Ала и Гис.

Глутамин легко транспортируется через клеточные мембраны путём облегчённой диффузии (для глутамата возможен только активный транспорт) и поступает из тканей в кровь. Основными тканями-поставщикам:и глутамина служат мышцы, мозг и печень. С током крови глутамин транспортируется в кишечник и почки.

В клетках кишечника под действием фермента глутаминазы происходит гидролитическое освобождение амидного азота в виде аммиака:

Образовавшийся в реакции глутамат подвергается трансаминированию с пируватом. ос-Аминогруппа глутаминовой кислоты переносится в состав аланина (рис. 9-10). Большие количества аланина поступают из кишечника в кровь воротной вены и поглощаются печенью. Около 5% образовавшегося аммиака удаляется в составе фекалий, небольшая часть через воротную вену попадает в печень, остальные ~90% выводятся почками.

В почках также происходит гидролиз глутамина под действием глутаминазы с образованием аммиака. Этот процесс является одним из механизмов регуляции кислотно щелочного равновесия в организме и сохранения важнейших катионов для поддержания осмотического давления. Глутаминаза почек значительно индуцируется при ацидозе, образующийся аммиак нейтрализует кислые продукты обмена и в виде аммонийных солей экскретируется с мочой (рис. 9-11). Эта реакция защищает организм от излишней потери ионов Na + и К + , которые также могут использоваться для выведения анионов и утрачиваться. При алкалозе количество глутаминазы в почках снижается.

В почках образуется и выводится около 0,5 г солей аммония в сутки.

Высокий уровень глутамина в крови и лёгкость его поступления в клетки обусловливают использование глутамина во многих анаболических процессах. Глутамин - основной донор азота в организме. Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых


Рис. 9-11. Метаболизм амидного азота глутамина в почках.

нуклеотидов, аспарагина, аминосахаров и других соединений (рис. 9-12).

Ещё одной реакцией обезвреживания аммиака в тканях можно считать синтез аспарагина под действием аспарагинсинтетазы.

Существуют 2 изоформы этого фермента - глутаминзависимая и аммиакзависимая, которые используют разные доноры амидных групп. Первая функционирует в животных клетках, вторая преобладает в бактериальных клетках, но присутствует и у животных. Однако такой путь обезвреживания аммиака в клетках человека используется редко и к тому же требует больших энергетических затрат (энергию двух макроэргических связей), чем синтез глутамина.

Наиболее значительные количества аммиака обезвреживаются в печени путём синтеза мочевины. В первой реакции процесса аммиак связывается с диоксидом углерода с образованием карбамоилфосфата, при этом затрачиваются 2 молекулы АТФ. Реакция происходит в митохондриях гепатоцитов под действием фермента карбамоилфос-фатсинтетазы I. Карбамоилфосфатсинтетаза II локализована в цитозоле клеток всех тканей и участвует в синтезе гшримидиновых нуклеотидов (см. раздел 10). Карбамоилфосфат затем включается в орнитиновый цикл и используется для синтеза мочевины.

В мозге и некоторых других органах может протекать восстановительное аминирование α-кетоглутарата под действием глутаматдегидрогеназы, катализирующей обратимую реакцию. Однако этот путь обезвреживания аммиака в тканях используется слабо, так как глутаматдегидрогеназа катализирует преимущественно реакцию дезаминирования глутамата. Хотя, если учитывать последующее образование глутамина, реакция выгодна для клеток, так как способствует связыванию сразу 2 молекул NH 3 .

Из мышц и кишечника избыток аммиака выводится преимущественно в виде аланина. Этот механизм необходим, так как активность глутаматдегидрогеназы в мышцах невелика и непрямое дезаминирование аминокислот малоэффективно. Поэтому в мышцах существует ещё один путь выведения азота. Образование аланина в этих органах можно представить следующей схемой (см. схему ниже).

Аминогруппы разных аминокислот посредством реакций трансаминирования переносятся на пируват, основным источником которого служит процесс окисления глюкозы.

Мышцы выделяют особенно много аланина в силу их большой массы, активного потребления



Схема

глюкозы при физической работе, а также потому, что часть энергии они получают за счёт распада аминокислот. Образовавшийся аланин поступает в печень, где подвергается непрямому дезаминированию. Выделившийся аммиак обезвреживается, а пируват включается в глюконеогенез. Глюкоза из печени поступает в ткани и там, в процессе гликолиза, опять окисляется до пирувата (рис. 9-13).

Образование аланина в мышцах, его перенос в печень и перенос глюкозы, синтезированной в печени, обратно в мышцы составляют глюкозо-аланиновый цикл, работа которого сопряжена с работой глюкозо-лактатного цикла (см. раздел 7).

Совокупность основных процессов обмена аммиака в организме представлена на рис. 9-14. Доминирующими ферментами в обмене аммиака служат глутаматдегидрогеиаза и глутаминсинтетаза.

В. Орнитиновый цикл

Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота (рис. 9-15). Экскреция мочевины в норме составляет ∼25 г/сут.

При повышении количества потребляемых с пищей белков экскреция мочевины увеличивается. Мочевина синтезируется только в печени, что было установлено ещё в опытах И.Д. Павлова. Поражение печени и нарушение синтеза мочевины приводят к повышению содержания в крови и тканях аммиака и аминокислот (в первую очередь, глутамина и аланина).

В 40-х годах XX века немецкие биохимики Г. Кребс и К. Гензелейт установили, что синтез мочевины представляет собой циклический процесс, состоящий из нескольких стадий, ключевым соединением которого, замыкающим цикл, является орнитин. Поэтому процесс синтеза мочевины получил название "орнитиновый цикл", или "цикл Кребса-Гензелейта".

1. Реакции синтеза мочевины

Мочевина (карбамид) - полный амид угольной кислоты - содержит 2 атома азота. Источником

одного из них является аммиак, который в печени связывается с диоксидом углерода с образованием



Рис. 9-14. Обмен аммиака. Основной источник аммиака - аминокислоты. Большая часть образовавшегося аммиака обезвреживается в орнитиновом цикле в печени и выделяется в виде мочевины. Основной реакцией обезвреживания аммиака в тканях является синтез глутамина, который затем используется в анаболических процессах и для обезвреживания веществ в печени. Ферменты глутаматдегидрогеназа и глутаминсинтетаза являются регуляторными и обусловливают скорость процессов образования и обезвреживания аммиака.

карбамоилфосфата под действием карбамоилфосфатсинтетазы I (см. схему А ниже).

В следующей реакции аргининосукцинатсинтетаза связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарную кислоту). Этот фермент нуждается в ионах Mg 2+ . В реакции затрачивается 1 моль АТФ, но используется энергия двух макроэргических связей. Аспартат - источник второго атома азота мочевины (см. схему А на с. 483).



Схема А



Схема Б

Аргинин подвергается гидролизу под действием аргиназы, при этом образуются орнитин и мочевина. Кофакторами аргиназы являются ионы Са 2+ или Мn 2+ . Высокие концентрации орнитина и лизина, являющихся структурными аналогами аргинина, подавляют активность этого фермента:

Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.

Первые две реакции процесса происходят в митохондриях гепатоцитов. Затем цитруллин, являющийся продуктом этих реакций, транспортируется в цитозоль, где и осуществляются дальнейшие превращения (рис. 9-16).

Суммарное уравнение синтеза мочевины:

СО 2 + NH 3 + Аспартат + 3 АТФ + 2 Н 2 О → Мочевина + Фумарат + 2 (АДФ + Н 3 Р0 4) + АМФ + H 4 P 2 O 7 .

Аммиак, используемый карбамоилфосфатсинтетазой I, поставляется в печень с кровью ворот-вены. Роль других источников, в том числе гсительного дезаминирования глутаминовой эты в печени, существенно меньше.

Аспартат, необходимый для синтеза аргининокцината, образуется в печени путём трансаминирования

Схема Б

Рис. 9-16. Орнитиновый цикл Кребса-Гензелейта. Окислительное дезаминирование глутамата происходит в митохондриях. Ферменты орнитинового цикла распределены между митохондриями и цитозолем. Поэтому необходим трансмембранный перенос глутамата, цитруллина и орнитина с помощью специфических транслоказ. На схеме показаны пути включения азота двух разных аминокислот (аминокислота 1 и аминокислота 2) в молекулу мочевины: • одна аминогруппа - в виде аммиака в матриксе митохондрии; • вторую аминогруппу поставляет аспартат цитозоля.

аланина с оксалоацетатом. Алании поступает главным образом из мышц и клеток кишечника. Источником оксалоацетата, необходимого для этой реакции, можно считать превращение фумарата, образующегося в реакциях орнитинового цикла. Фумарат в результате двух реакций цитратного цикла превращается в оксалоацетат, из которого путём трансаминирования образуется аспартат (рис. 9-17). Таким образом, с орнитиновым циклом сопряжён цикл регенерации аспартата из фумарата. Пиру ват, образующийся в этом цикле из аланина, используется для глюконеогенеза.

Ещё одним источником аспартата для орнитинового цикла является Трансаминирование глутамата с оксалоацетатом.

2. Энергетический баланс процесса

В реакциях орнитинового цикла расходуются четыре макроэргических связи трёх молекул


АТФ на каждый оборот цикла. Однако процесс превращения аминокислот в безазотистые остатки и мочевину имеет пути компенсации энергозатрат:

  • при включении фумарата в ЦТК на стадии дегидрирования малата образуется NADH, который обеспечивает синтез 3 молекул АТФ (рис. 9-18);
  • при окислительном дезаминировании глу-тамата в разных органах также образуется NADH, соответственно - ещё 3 молекулы АТФ.

Затраты энергии происходят также и при трансмембранном переносе веществ, связанном с синтезом и экскрецией мочевины (рис. 9-18). Первые две реакции орнитинового цикла происходят в митохондриях, а последующие три - в цитозоле. Цитруллин, образующийся в митохондрии, должен быть перенесён в цитозоль, а орнитин, образующийся в цитозоле, необходимо транспортировать в митохондрию. Кроме того, в почках перенос мочевины из крови в мочу происходит путём активного транспорта за счёт градиента ионов натрия, создаваемого К + ,Nа + -АТФ-азой, что тоже сопряжено с энергозатратами.

Полный набор ферментов орнитинового цикла есть только в гепатоцитах. Отдельные же ферменты орнитинового цикла обнаруживаются не только в печени, но и в других клетках. В энтероцитах, например, имеется карбамоилфосфат-синтетаза I и орнитинкарбамоилтрансфераза, следовательно, может синтезироваться цитруллин. В почках обнаружены аргининосукцинатсинтетаза и аргининосукцинатлиаза. Цитруллин, образовавшийся в энтероцитах, может поступать в почки и превращаться там в аргинин, который переносится в печень и гидролизуется аргиназой. Активность этих рассеянных по разным органам ферментов значительно ниже, чем в печени.

3. Биологическая роль орнитинового цикла
Кребса-Гензелейта

Орнитиновый цикл в печени выполняет 2 функции:

  • превращение азота аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов, главным образом аммиака;
  • синтез аргинина и пополнение его фонда в организме.

Регуляторные стадии процесса - синтез карбамоилфосфата, синтез цитруллина и заключительная стадия, катализируемая аргиназой. Эффективность работы орнитинового цикла при нормальном питании человека и умеренных физических нагрузках составляет примерно 60% его мощности. Запас мощности необходим для избежания гипераммониемии при изменениях количества белка в пище. Увеличение скорости синтеза мочевины происходит при длительной физической работе или длительном голодании, которое сопровождается распадом тканевых белков. Некоторые патологические состояния, характеризующиеся интенсивным распадом белков


Рис. 9-18. Взаимосвязь орнитинового цикла и общего пути катаболизма. Фумарат, образующийся в результате расщепления аргининосукцината, превращается в малат, который затем переносится в митохондрии, включается в ЦТК и дегидрируется с образованием оксалоацетата. Эта реакция сопровождается выделением 3 молекул АТФ, которые и компенсируют затраты энергии на синтез одной молекулы мочевины.

тканей (сахарный диабет и др.), также сопровождаются активацией орнитинового цикла. При избыточном белковом питании количество ферментов орнитинового цикла в печени увеличивается, что приводит к интенсификации синтеза мочевины.

4. Гипераммониемия

Нарушение реакций обезвреживания аммиака может вызвать повышение содержания аммиака в крови - гипераммониемию, что оказывает токсическое действие на организм. Причинами гипераммониемии могут выступать как генетический дефект ферментов орнитинового цикла в печени, так и вторичное поражение печени в результате цирроза, гепатита и других заболеваний. Известны пять наследственных заболеваний, обусловленных дефектом пяти ферментов орнитинового цикла (табл. 9-4).

В литературе описаны случаи всех этих довольно редких энзимопатий, среди которых отмечено больше всего случаев гипераммониемии II типа.

Нарушение орнитинового цикла наблюдается при гепатитах различной этиологии и некоторых других вирусных заболеваниях. Например, установлено, что вирусы гриппа и других острых респираторных вирусных инфекций снижают активность карбамоилфосфатсинтетазы I. При циррозе и других заболеваниях печени также часто наблюдают гипераммониемию.

Снижение активности какого-либо фермента синтеза мочевины приводит к накоплению в крови субстрата данного фермента и его предшественников. Так, при дефекте аргининосук-цинатсинтетазы повышается содержание цитруллина (цитруллинемия); при дефекте аргиназы - концентрация аргинина, аргининосукцината, цитруллина и т.д. При гипераммониемиях I и II типа вследствие дефекта орнитинкарбамоилтрансферазы происходит накопление карбамоилфосфата в митохондриях и выход его в цитозоль. Это вызывает увеличение скорости синтеза пиримидиновых нуклеотидов (вследствие активации карбамоилфосфатсинтетазы II), что приводит к накоплению оротата, уридина и урацила и выведению их с мочой. Содержание всех метаболитов повышается, и состояние больных ухудшается при увеличении количества белков в пище. Тяжесть течения заболевания зависит также от степени снижения активности ферментов.

Все нарушения орнитинового цикла приводят к значительному повышению в крови концентрации аммиака, глутамина и аланина.

Гипераммониемия сопровождается появлением следующих симптомов:

  • тошнота, повторяющаяся рвота;
  • головокружение, судороги;
  • потеря сознания, отёк мозга (в тяжёлых случаях);
  • отставание умственного развития (при хронической врождённой форме).

Таблица 9-4. Наследственные нарушения орнитинового цикла и основные их проявления

Заболевание Дефект
фермента
Тип наследования Клинические
проявления
Метаболиты
кровь моча
Гиперам-
мониемия,
тип I
Карбамоил-
фосфат-
синтетаза I
Аутосомно-
рецессивный
В течение 24-48 ч после рождения кома, смерть Глн
Ала
NH 3
Оротат
Гиперам-
мониемия,
тип II
Орнитин-
карбамоил-
трансфераза
Сцепленный с Х-хромосомой Гипотония, снижение толерантности к белкам Глн
Ала
NH 3
Оротат
Цитрул-
линемия
Аргинино-
сукцинат-
синтетаза
Аутосомно-
рецессивный
Гипераммониемия тяжёлая у новорождённых. У взрослых - после белковой нагрузки Цитруллин
NH 3
Цитруллин
Аргинино-
сукцина-
турия
Аргинино-
сукцинат-
лиаза
Аутосомно-рецессивный Гипераммонимия, атаксия, судороги, выпадение волос Аргини-
носукцинат
NH 3
Аргини-
носукци-
нат, Глн, Ала, Лиз
Гиперар-
гининемия
Аргиназа Аутосомно-рецессивный Гипераргининемия Apr
NH 3
Apr
Лиз
Орнитин

Все симптомы гипераммониемии - проявление действия аммиака на ЦНС (см. выше подраздел IV, Б).

Для диагностики различных типов гипераммониемии производят определение содержания аммиака в крови, метаболитов орнитинового цикла в крови и моче, акгивности фермента в биоптатах печени.

Основной диагностический признак - повышение концентрации аммиака в крови. Содержание аммиака в крови может достигать 6000 мкмоль/л (в норме - 60 мкмоль/л). Однако в большинстве хронических случаев уровень аммиака может повышаться только после белковой нагрузки или в течение острых осложнённых заболеваний.

Лечение больных с различными дефектами орнитинового цикла в основном направлено на снижение концентрации аммиака в крови за счёт малобелковой диеты, введения кетоаналогов аминокислот в рацион и стимуляцию выведения аммиака в обход нарушенных реакций:

  • путём связывания и выведения NH 3 в составе фенилацетилглутамина и гишгуровой кислоты;
  • повышением концентрации промежуточных метаболитов цикла (аргинина, цитруллина, глутамата), образующихся вне блокируемых реакций (рис. 9-19).

Вводимый больным с дефектом карбамоил-фосфатсинтетазы I в качестве пищевой добавки фенилацетат в результате его конъюгации с глутамином образует фенилацетилглутамин, который экскретируется почками. Состояние больных при этом улучшается, так как происходит активация синтеза глутамина и снижение концентрации аммиака в крови (рис. 9-19, А).

Аналогичное действие оказывает введение бензоата, который связывает молекулу глицина. Образующаяся пшпуровая кислота выводится с мочой (рис. 9-19, Б). В составе гиппурата происходит выделение азота из организма. Недостаток глицина компенсируется либо путём синтеза его из серина, либо за счёт образования из NH 3 и СО 2 в реакции, катализируемой глицинсинтетазой. При этом образование глицина сопровождается связыванием одной молекулы аммиака.

При гипераммониемии II типа (дефект орнитинкарбамоилтрансферазы) введение больших


Рис. 9-19. Пути выведения аммиака при включении в диету глутамата и фенилацетата (А), бензоата (Б), цитруллина и аргинина (В). На рисунке обозначены ферментные блоки: 1 - дефект карбамоилфосфатсинтетазы I; 2-дефект орнитинкарбамоилтрансферазы; 3 - дефект аргининосукцинатлиазы.

доз цитруллина стимулирует синтез мочевины из аспартата (рис. 9-19, В), что также приводит к вьшедению азота из организма. Введение больших доз аргинина при аргининосукцинатурии (дефект аргининосукцинатлиазы) стимулирует регенерацию орнитина и выведение азота в составе цитруллина и аргининосукцината.

Г. Обмен аммиака и аминокислот между органами и тканями

В катаболизме аминокислот и образовании аммиака участвуют многие ткани. В клетках происходит связывание аммиака. Из организма азот выводится почками в виде двух конечных продуктов азотистого обмена - аммонийных солей (~ 0,5 г/сут), которые образуются в почках, и мочевины (~ 25 г/сут), которая содержит до 90% выводимого азота. Синтез мочевины происходит в печени в орнитиновом цикле, причём на образование 1 моля мочевины используется 1 моль аммиака и 1 моль аспарагиновой кислоты. Таким образом, для синтеза 25 г мочевины в сутки затрачивается 6,3 г аммиака и 50 г аспартата. Для доставки азота в печень должны интенсивно функционировать специальные механизмы.

Транспорт азота из тканей в печень происходит, в основном, в составе 3 соединений: глутамина, аланина, аммиака (небольшое количество в несвязанном виде).

Кроме глутамина и аланина, в крови присутствуют и другие свободные аминокислоты, причём содержание их и направление транспорта зависят от приёма пищи и использования эндогенных белков. Наибольшее количество свободных аминокислот поступает из мышц и кишечника, причём до 50% составляют аланин и глутамин. Существует направленный поток аминокислот из этих тканей в печень, который усиливается в абсорбтивный период при белковом питании.

Основное количество глутамина поставляют в кровь мышцы и мозг. Из кровеносного русла его поглощают печень и почки, где он подвергается действию глутаминазы. Почки - основной источник серина и частично аланина, которые сорбируются из плазмы печенью. Головной мозг, в отличие от всех других тканей, способен поглощать и окислять большие количества аминокислот с разветвлённой боковой цепью (валин, лейцин, изолейцин).

После приёма пищи из кишечника в плазму крови поступает много аминокислот, причём

преобладают аминокислоты с разветвлённой боковой цепью (до 20% от общего количества), которые затем поглощаются, в основном, печенью, мышцами и мозгом (рис. 9-20). В мышцах происходит усиленный катаболизм этих аминокислот, причём они выступают основными донорами аминогруппы в синтезе аланина из пирувата (см. выше "глюкозо-аланиновый цикл").

В постабсорбтивном периоде основными источниками свободных аминокислот служат мышцы. Они поставляют в основном аланин и глутамин (рис. 9-21). Аланин поглощается печенью, глутамин - кишечником и почками. В кишечнике азот глутамина переносится в аланин или серии и в их составе транспортируется в печень, где активируется процесс глюконеогенеза. Интенсивность глюконеогенеза из этих аминокислот намного выше, чем из всех других. Таким образом, аланин и серии - основные гликогенные аминокислоты. Аминокислоты с разветвлённой боковой цепью (валин, лейцин, изолейцин и др.), которые освобождаются из мышц, направляются в мозг, где окисляются и служат важным источником энергии.


Рис. 9-20. Обмен аминокислот между тканями и органами в абсорбтивном периоде. В абсорбтивный период основным источником свободных аминокислот служит кишечник. Большую часть поступивших аминокислот составляют гидрофобные аминокислоты с разветвлённой цепью. Экзогенные полярные аминокислоты из воротной вены сорбируются и используются в основном печенью. Разветвлённые аминокислоты поглощаются из кровотока клетками мозга или мышц.


Рис. 9-21. Обмен аминокислот между тканями и органами в постабсорбтивном периоде. В постабсорбтивный период свободные аминокислоты поступают преимущественно из мышц, в которых усиливается катаболизм белков. Аминокислоты используются в глюконеогенезе в печени. В крови повышен уровень аланина, серина и глутамина.

Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины. Последняя выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обмена. На долю мочевины приходится до 80-85% от всего азота мочи. Основным и, возможно, единственным местом синтеза мочевины является печень. Впервые Г. Кребс и К. Гензеляйт в 1932 г. вывели уравнения реакций синтеза мочевины, которые представлены в виде цикла, получившего в литературе название орнитинового цикла мочевинообразования Кребса .

Следует указать, что в биохимии это была первая циклическая система метаболизма, описание которой почти на 5 лет опеределило открытие Г. Кребсом другого метаболического процесса - цикла трикарбоновых кислот. Дальнейшие исследования в основном подтвердили циклический характер биосинтеза мочевины в печени. Благодаря исследованиям Г. Коена, С. Ратнер и сотр. были уточнены промежуточные этапы и ферментные системы, катализирующие образование мочевины.

Таким образом, весь цикл мочевинообразования может быть представлен следующим образом. На первом этапе синтезируется макроэргическое соединение карбамоилфосфат - метаболически активная форма аммиака, используемая в качестве исходного продукта для синтеза пиримидиновых нуклеотидов (соответственно ДНК и РНК) и аргинина (соответственно белка и мочевины):

Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выводится избыток азота .

Орнитиновый цикл в печени выполняет две функции:

Превращение аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов, главным образом аммиака;

Синтез аргинина и пополнение его фонда в организме.

Рассмотрим цикл мочевины:


Рисунок 34 - Орнитиновый цикл синтеза мочевины в печени

Начинается он с образования карбамоилфосфата в митохондриях, где много АТФ.

1 Образование карбамоилфосфата . Ионы аммония, возникшие в результате окислительного дезаминирования глутаминовой кислоты, взаимодействуют с гидрокарбонат - анионом и АТФ при участии карбамоилфосфатсинтетазы, образуя карбамоилфосфат, содержащий макроэргическую связь:

NН 4 + + НСО 3 - + 2АТФ → Н 2 N - С + 2АДФ + Н 2 РО 4 - + Н +

Карбамоилфосфат

2. Получение цитруллина . В матриксе митохондрий карбамоилфосфат конденсируется с аминокислотой орнитином, которая, являясь гомологом лизина, не входит в состав белков.

Реакция катализируется орнитинкарбамоилтрансферазой :

Н СОО - О Н СОО -

С + Н 2 N - С → СО + Н 2 РО 4 -

+ / \ + \ + / \ ||

Н 3 N (СН 2) 3 NН 3 О ~ Ф Н 3 N (СН 2) 3 NН - С - NН 2

Орнитин Карбамоилфосфат цитруллин

Образующийся цитруллин переходит в цитозоль клеток печени, где и происходят остальные реакции цикла мочевины.

3. Получение аргининосукцината . Замещение карбонильной группы цитруллина на аминогруппу аспартата с образованием гуанидиновой группировки аргининосукцината происходит при участии АТФ и катализируется аргининосукцинатсинтетазой:

Н СОО - Н СОО -

С О + С + АТФ →

Н 3 N (СН 2) 3 NН - С - NН 2 Н 3 N СН 2 СОО -

Цитруллин аспартат

С Н 2 N СН 2 СОО - + Н 2 Р 2 О 7 2- + АМФ

Н 3 N (СН 2) 3 NН - С - NН - СНСОО -

Аргининосукцинат

Реакция эндэргоническая, на протекание первой и третьей реакций цикла расходуется 4 молекулы АТФ.

4. Распад аргининосукцината . Под действием аргининосукцинатлиазы аргининосукцинат экзэргонически расщепляется с образованием аргинина и фумарата:

Н СОО - Н СОО - СОО - Н

С Н 2 N СН 2 СОО - → С Н 2 N + С = С

+ / \ || | + / \ || / \

Н 3 N (СН 2) 3 NН - С - NН - СНСОО - Н 3 N (СН 2) 3 NН - С - NН 2 Н СОО -

Аргининосукцинат Аргинин Фумарат

5. Образование мочевины и регенерация орнитина. Гидролиз аргинина, катализируемый аргиназой, приводит к образованию мочевины и регенерации орнитина. Реакция экзэргонична.

Н СОО - Н СОО - NН 2

С Н 2 N → С + О = С

+ / \ || + / \ + \

Н 3 N (СН 2) 3 NН - С - NН 2 Н 3 N (СН 2) 3 NН 3 NН 2

Аргинин Орнитин Мочевина

Регенерированный орнитин может снова поступать в митохондрии и участвовать в новом обороте цикла мочевины. Образующуюся мочевину кровь переносит из печени в почки, где извлекается из крови и удаляется из организма с мочой.

В орнитиновом цикле расходуется 4 макроэргические связи трех молекул АТФ на каждый оборот цикла.

Однако процесс образования мочевины обеспечивает сам себя энергией:

При регенерации аспартата из фумарата на стадии дегидрирования малата образуется НАДН, который может обеспечить синтез 3 макроэргических связей.

При окислительном дезаминировании глутамата в разных органах тоже образуется НАДН, который может обеспечить синтез 3 макроэргических связей.

Из приведенных реакций видно, что токсичный аммиак превращается в безвредную мочевину. При этом один из атомов азота мочевины образуется из аммиака, другой - из аспартата.

Синтез мочевины - это главный путь обезвреживания аммиака в оранизме. Мочевина - конечный азотистый продукт, выделяющийся с мочой у человека и млекопитающих. Образование ее происходит в печени. В 1932 г. возникла теория синтеза мочевины, известная под названием цикла Кребса, согласно которой в синтезе мочевины принимают участие 3 аминокислоты - аргинин, орнитин и цитрулин. Причем образование мочевины по циклу Кребса происходит в срезах печени в аэробных условиях. Схематически образование мочевины по циклу Кребса можно представить следующим образом:

Суммирование реакций цикла образования мочевины приводит к следующему уравнению:

Образование мочевины по указанному циклу получило свое подтверждение и является общепринятым. Однако в последствии цикл Кребса подвергся существенной детализации. Из приведенных выше реакций можно видеть, что в образовании мочевины участвуют свободный аммиак и углекислый газ. Между тем известно, что аммиак, по мере своего образования в тканях, устраняется с образованием глутамина. Далее известно, что реакции переаминирования, которые активно происходят в различных тканях, приводят к тому, что аминогруппы подвергающихся распаду аминокислот не освобождаются в виде аммиака, а переносятся на кетокислоты. Естественно возникает вопрос, откуда же в печени берется аммиак, необходимый для синтеза мочевины? Ответ на этот вопрос дают проведенные Ратнер с сотр. исследования, показывающие, что в синтезе мочевины помимо свободного аммиака участвуют аминогруппы, входящие в состав аминокислот, в частности аспарагиновой, без предварительного отщепления их в виде аммиака. Таким образом, последовательность синтеза мочевины можно представить следующими реакциями:



1) Аммиак взаимодействует с углекислым газом под действием
фермента карбамоилфосфатсинтетазы, образуется карбамоилфосфат

2) Карбамоилфосфат взаимодействует с орнитином, образуется
цитруллин и фосфат (катализатор - орнитин - карбамоилфосфат-
трансфераза)

3) Цитруллин взаимодействует с аспарагиновой кислотой с
образованием аргининсукцината:


Катализирует реакцию аргининсукцинатсинтетаза.

4) Аргининсукцинат расщепляется аргининсукцинатлиазой на фумарат
и аргинин:

5) Аргинин под действием аргиназы расщепляется гидролитически на
мочевину и орнитин:


Из приведенных реакций можно заключить, что одна группа NH 2 молекулы мочевины образуется из аммиака, а другая из аминогруппы аспарагиновой кислоты. Отсюда следует вывод, что аминогруппы 50% аминокислот, подвергающихся в организме превращению путем переаминироваиия (через глутаминовую кислоту), включаются в шавелевоуксусную кислоту с образованием аспарагиновой кислоты. Аминогруппа аспарагиновой кислоты, как мы видели, непосредственно используется для синтеза мочевины. Использование азота аминокислот (аминогрупп) для синтеза мочевины видно из схемы, показывающей связь между синтезом мочевины и циклом трикарбоновых кислот.

Обезвреживание аммиака в тканях может происходить и путем синтеза глутамина и аспарагина. Однако большая часть NH 3 утилизируется за счет синтеза мочевины.

Обмен сложных белков

ОБМЕН НУКЛЕОПРОТЕИДОВ

В ЖКТ под действием соляной кислоты, пепсина, трипсина и др. ферментов от нуклеопротендов отщепляется белковая часть и гидролизуется до аминокислот. Простетическая группа - нуклеиновые кислоты - разрушаются до мононуклеотидов под действием нуклеаз. Мононуклеотнды частично всасываются, а большей частью под действием фосфатаз и нуклеотидаз расщепляются на составные компоненты: азотистые основания, пентозы и фосфорную кислоту, которые, как водорастворимые вещества, активно всасываются. Фосфорная кислота пополняет запасы фосфора в организме, пентозы принимают участие в процессах окисления и синтеза новых НК, а азотистые основания

подвергаются различным превращениям. Так пуриновые азотистые основания после дезаминирования превращаются в ксантин, а затем под действием ксантиноксидазы - в мочевую кислоту, которая выводится из организма почками.

Конечными продуктами распада пиримидиновых азотистых
оснований являются аммиак, CO 2 и простые азотистые соединения. Так
урацил распадается на NH 3 , СО 2 и b- аланин. Пути превращения NH 3 и CО 2
мы же рассматривали, а b-аланин участвует в синтезе КоА.

Одновременно с распадом в клетках осуществляется постоянный синтез нуклеиновых кислот. Это сложный процесс, в котором участвует большое число исходных соединений: пентозы, глицин, глутамин, аспарагиновая кислота, активная форма СО 2, АТФ и соответствующие ферменты. В ходе синтеза образуются сначала мононуклеотиды: АМФ, ГМФ, УМФ, последнее соединение служит стартовым веществом для образования ТМФ и ЦМФ.

Для синтеза самих НК необходимы все типы нуклеотидтрифосфатов, набор ферментов и ДНК, на матрице которой строятся новые дочерние молекулы ДНК и молекулы РНК.

ОБМЕН ХРОМОПРОТЕИДОВ.

Из многих представителей хромопротеидов для человека наибольшее значение имеет гемоглобин, обмен которого мы и рассмотрим.

Поступающий с пищей гемоглобин (НЬ) в ЖКТ распадается на свои составные части - гем и глобин. Глобин гидролизуется до аминокислот, которые всасываются в кровь, а гем окисляется до гематина и выводится с калом, т.е. экзогенный гем не используется.

Обмен эндогенного Hb протекает весьма интенсивно и связан с периодом существования эритроцитов, в которых содержится весь НЬ. Этот период составляет 110 -120 дней, после чего эритроциты распадаются, процесс активно протекает в печени, селезенке, костном мозге и др. тканях РЭС. Часть же эритроцитов распадаегся в кровеносном русле, освободившийся при этом НЬ адсорбируется в крови гаптоглобином и транспортируется в печень, где распадается по вышеуказанной схеме.

В клетках РЭС НЬ вначале окисляется под действием гем-оксигеназы до вердоглобина (зеленого цвета). Последний спонтанно (самопроизвольно) распадается на свои составные части: глобин, Fe 3+ и оставшуюся часть гема-биливердин (пигмент зеленого цвета). Глобин гидролизуется до аминокислот. Fe 3+ захватывается трансферрином и кровью доставляется в печень, где освобождается от белка-переносчика и откладывается про запас в виде ферритина (соединение Fe с особым белком). Этот комплекс по мере надобности распадается, Fe вновь адсорбируется трансферрином, доставляется в клетки, где участвует в синтезе НЬ, цитохромов и пр.

Биливердин восстанавливается в билирубин - пигмент желто-красного цвета, который является водонерастворимым и весьма токсичным веществом. Поэтому он быстро выводится из клеток РЭС, поступает в кровь, где адсорбируется альбумином, образуя растворимый в воде и нетоксичный комплекс, называемый свободным билирубином (непрямым) . Он транспортируется в печень, где распадается и билирубин попадает в гепатоциты. Здесь он взаимодействует с активной формой глюкуроновой кислоты (УДФКГ) с образованием моно- и диглюкуронидбилирубина, являющегося нетоксичным иводорастворимым соединением, называемым связанным билирубином (прямым ). Связанный билирубин поступает в желчный пузырь, входит в состав желчных пигментов, выделяется с желчью в кишечник, где от него отщепляется глюкуроновая кислота. Освободившийся билирубин подвергается воздействию ферментов микроорганизмов с образованием мезобилиногена, а затем – стсркобилиногена, который окисляетсякислородом воздухадо стеркобилина и выводится с калом. Небольшая часть мезобилиногена всасывается в кровь и по воротной вене доставляется в печень, где расщепляется до диперролов (2 пиррольных кольца), которые задерживаются печенью ине поступают в общий кровоток. Большая же часть мезобилиногена, превратившаяся в стеркобилиноген, в нижних отделах толстой кишки всасывается в кровь и через геморроидальные вены попадает в систему большого круга кровообращения, а затем выводится с мочой в виде уробилиногена, окисляющегося на воздухе в уробилин.

Таков в обших чертах основной путь распада НЬ.

Но для нормальной жизнедеятельности организма постоянно требуется определенное количество НЬ, синтез которого осуществляется по следующей схеме.