Основные виды химической связи примеры. Типы химических связей: ионная, ковалентная, металлическая

Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристика ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Учение о химической связи составляет основу всей теоретической химии.

Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы.

Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную.

Деление химических связей на типы носит условный характер, по скольку все они характеризуются определенным единством.

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи.

Металлическая связь совмещает ковалентное взаимодействие атомов с помощью обобществленных электронов и электростатическое притяжение между этими электронами и ионами металлов.

В веществах часто отсутствуют предельные случаи химической связи (или чистые химические связи).

Например, фторид лития $LiF$ относят к ионным соединениям. Фактически же в нем связь на $80%$ ионная и на $20%$ ковалентная. Правильнее поэтому, очевидно, говорить о степени полярности (ионности) химической связи.

В ряду галогеноводородов $HF—HCl—HBr—HI—HАt$ степень полярности связи уменьшается, ибо уменьшается разность в значениях электроотрицательности атомов галогена и водорода, и в астатоводороде связь становится почти неполярной $(ЭО(Н) = 2.1; ЭО(At) = 2.2)$.

Различные типы связей могут содержаться в одних и тех же веществах, например:

  1. в основаниях: между атомами кислорода и водорода в гидроксогруппах связь полярная ковалентная, а между металлом и гидроксогруппой — ионная;
  2. в солях кислородсодержащих кислот: между атомом неметалла и кислородом кислотного остатка — ковалентная полярная, а между металлом и кислотным остатком — ионная;
  3. в солях аммония, метиламмония и т. д.: между атомами азота и водорода — ковалентная полярная, а между ионами аммония или метиламмония и кислотным остатком — ионная;
  4. в пероксидах металлов (например, $Na_2O_2$) связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом — ионная и т.д.

Различные типы связей могут переходить одна в другую:

— при электролитической диссоциации в воде ковалентных соединений ковалентная полярная связь переходит в ионную;

— при испарении металлов металлическая связь превращается в ковалентную неполярную и т.д.

Причиной единства всех типов и видов химических связей служит их одинаковая химическая природа — электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии.

Способы образования ковалентной связи. Характеристики ковалентной связи: длина и энергия связи

Ковалентная химическая связь — это связь, возникающая между атомами за счет образования общих электронных пар.

Механизм образования такой связи может быть обменным и донорно-акцепторным.

I. Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов.

1) $H_2$ - водород:

Связь возникает благодаря образованию общей электронной пары $s$-электронами атомов водорода (перекрыванию $s$-орбиталей):

2) $HCl$ — хлороводород:

Связь возникает за счет образования общей электронной пары из $s-$ и $p-$электронов (перекрывания $s-p-$орбиталей):

3) $Cl_2$: в молекуле хлора ковалентная связь образуется за счет непарных $p-$электронов (перекрывание $p-p-$орбиталей):

4) $N_2$: в молекуле азота между атомами образуются три общие электронные пары:

II. Донорно-акцепторный механизм образования ковалентной связи рассмотрим на примере иона аммония $NH_4^+$.

Донор имеет электронную пару, акцептор — свободную орбиталь, которую эта пара может занять. В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна — по донорно-акцепторному механизму.

Ковалентные связи можно классифицировать по способу перекрывания электронных орбиталей, а также по смещению их к одному из связанных атомов.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются $σ$-связями (сигма-связями) . Сигма-связь очень прочная.

$p-$Орбитали могут перекрываться в двух областях, образуя ковалентную связь за счет бокового перекрывания:

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т.е. в двух областях, называются $π$-связями (пи-связями).

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.

Ковалентную химическую связь, образующуюся между атомами с одинаковой электроотрицательностью, называют неполярной. Электронные пары не смещены ни к одному из атомов, т.к. атомы имеют одинаковую ЭО — свойство оттягивать к себе валентные электроны от других атомов. Например:

т.е. посредством ковалентной неполярной связи образованы молекулы простых веществ-неметаллов. Ковалентную химическую связь между атомами элементов, электроотрицательности которых различаются, называют полярной.

Длина и энергия ковалентной связи.

Характерные свойства ковалентной связи — ее длина и энергия. Длина связи — это расстояние между ядрами атомов. Химическая связь тем прочнее, чем меньше ее длина. Однако мерой прочности связи является энергия связи , которая определяется количеством энергии, необходимой для разрыва связи. Обычно она измеряется в кДж/моль. Так, согласно опытным данным, длины связи молекул $H_2, Cl_2$ и $N_2$ соответственно составляют $0.074, 0.198$ и $0.109$ нм, а энергии связи соответственно равны $436, 242$ и $946$ кДж/моль.

Ионы. Ионная связь

Представим себе, что «встречаются» два атома: атом металла I группы и атом неметалла VII группы. У атома металла на внешнем энергетическом уровне находится единственный электрон, а атому неметалла как раз не хватает именно одного электрона, чтобы его внешний уровень оказался завершенным.

Первый атом легко отдаст второму свой далекий от ядра и слабо связанный с ним электрон, а второй предоставит ему свободное место на своем внешнем электронном уровне.

Тогда атом, лишенный одного своего отрицательного заряда, станет положительно заряженной частицей, а второй превратится в отрицательно заряженную частицу благодаря полученному электрону. Такие частицы называются ионами.

Химическая связь, возникающая между ионами, называется ионной.

Рассмотрим образование этой связи на примере хорошо всем знакомого соединения хлорида натрия (поваренная соль):

Процесс превращения атомов в ионы изображен на схеме:

Такое превращение атомов в ионы происходит всегда при взаимодействии атомов типичных металлов и типичных неметаллов.

Рассмотрим алгоритм (последовательность) рассуждений при записи образования ионной связи, например между атомами кальция и хлора:

Цифры, показывающие число атомов или молекул, называются коэффициентами , а цифры, показывающие число атомов или ионов в молекуле, называют индексами.

Металлическая связь

Ознакомимся с тем, как взаимодействуют между собой атомы элементов-металлов. Металлы обычно существуют не в виде изолированных атомов, а в форме куска, слитка или металлического изделия. Что удерживает атомы металла в едином объеме?

Атомы большинства металлов на внешнем уровне содержат небольшое число электронов — $1, 2, 3$. Эти электроны легко отрываются, и атомы при этом превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому, связывая их в единое целое. Соединяясь с ионами, эти электроны образуют временно атомы, потом снова отрываются и соединяются уже с другим ионом и т.д. Следовательно, в объеме металла атомы непрерывно превращаются в ионы и наоборот.

Связь в металлах между ионами посредством обобществленных электронов называется металлической.

На рисунке схематически изображено строение фрагмента металла натрия.

При этом небольшое число обобществленных электронов связывает большое число ионов и атомов.

Металлическая связь имеет некоторое сходство с ковалентной, поскольку основана на обобществлении внеш них электронов. Однако при ковалентной связи обобществлены внешние непарные электроны только двух соседних атомов, в то время как при металлической связи в обобществлении этих электронов принимают участие все атомы. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической, как правило, пластичны, электропроводны и имеют металлический блеск.

Металлическая связь характерна как для чистых металлов, так и для смесей различных металлов — сплавов, находящихся в твердом и жидком состояниях.

Водородная связь

Химическую связь между положительно поляризованными атомами водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов, имеющих неподеленные электронные пары ($F, O, N$ и реже $S$ и $Cl$), другой молекулы (или ее части) называют водородной.

Механизм образования водородной связи имеет частично электростатический, частично донорно- акцепторный характер.

Примеры межмолекулярной водородной связи:

При наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями (спирт, вода) или легко сжижающимися газами (аммиак, фтороводород).

Вещества с водородной связью имеют молекулярные кристаллические решетки.

Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

Молекулярное и немолекулярное строение веществ

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. Вещество при заданных условиях может находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном. Свойства вещества зависят также от характера химической связи между образующими его частицами — молекулами, атомами или ионами. По типу связи различают вещества молекулярного и немолекулярного строения.

Вещества, состоящие из молекул, называются молекулярными веществами . Связи между молекулами в таких веществах очень слабые, намного слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются — вещество превращается в жидкость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из молекул, повышаются с увеличением молекулярной массы.

К молекулярным веществам относятся вещества с атомной структурой ($C, Si, Li, Na, K, Cu, Fe, W$), среди них есть металлы и неметаллы.

Рассмотрим физические свойства щелочных металлов. Относительно малая прочность связи между атомами обуславливает низкую механическую прочность: щелочные металлы мягкие, легко режутся ножом.

Большие размеры атомов приводят к малой плотности щелочных металлов: литий, натрий и калий даже легче воды. В группе щелочных металлов температуры кипения и плавления понижаются с увеличением порядкового номера элемента, т.к. размеры атомов увеличиваются, и ослабевают связи.

К веществам немолекулярного строения относятся ионные соединения. Таким строением обладает большинство соединений металлов с неметаллами: все соли ($NaCl, K_2SO_4$), некоторые гидриды ($LiH$) и оксиды ($CaO, MgO, FeO$), основания ($NaOH, KOH$). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.

Кристаллические решетки

Вещество, как известно, может существовать в трех агрегатных состояниях: газообразном, жидком и твердом.

Твердые вещества: аморфные и кристаллические.

Рассмотрим, как влияют особенности химических связей на свойства твердых веществ. Твердые вещества делятся на кристаллические и аморфные.

Аморфные вещества не имеют четкой температуры плавления — при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов — в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки.

В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионные кристаллические решетки.

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы $Na^{+}, Cl^{-}$, так и сложные $SO_4^{2−}, ОН^-$. Следовательно, ионными кристаллическими решетками обладают соли, некоторые оксиды и гидроксиды металлов. Например, кристалл хлорида натрия состоит из чередующихся положительных ионов $Na^+$ и отрицательных $Cl^-$, образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Атомные кристаллические решетки.

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями. Примером веществ с таким типом кристаллических решеток может служить алмаз — одно из аллотропных видоизменений углерода.

Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она выше $3500°С$), они прочны и тверды, практически нерастворимы.

Молекулярные кристаллические решетки.

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными ($HCl, H_2O$), и неполярными ($N_2, O_2$). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решетками имеют малую твердость, низкие температуры плавления, летучи. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

Металлические кристаллические решетки.

Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Внешние оболочки всех элементов, кроме благородных газов, являются НЕЗАВЕРШЕННЫМИ и в процессе химического взаимодействия они ЗАВЕРШАЮТСЯ.

Химическая связь образуется за счет электронов внешних электронных оболочек, но осуществляется она по-разному.


Различают три основных типа химической связи:

Ковалентную связь и ее разновидности: полярную и неполярную ковалентную связь;

Ионную связь;

Металлическую связь.


Ионная связь

Ионная химическая связь – это связь, образовавшаяся за счет электростатического притяжения катионов к анионам.


Ионная связь возникает между атомами, резко отличающимися друг от друга величинами электроотрицательности, поэтому пара электронов, образующая связь, сильно смещена к одному из атомов, так что можно считать её принадлежащей атому этого элемента.


Электроотрицательность - это способность атомов химических элементов притягивать к себе свои и чужие электроны.


Природу ионной связи, структуру и свойства ионных соединений объясняют с позиции электростатической теории химических связей.

Образование катионов: М 0 - n e - = M n+

Образование анионов: НеМ 0 + n e - = НеM n-

Например: 2Na 0 + Cl 2 0 = 2Na + Cl -


При горении металлического натрия в хлоре в результате окислительно -восстановительной реакции образуются катионы сильно электроположительного элемента натрия и анионы сильно-электроотрицательного элемента хлора.


Вывод: ионная химическая связь образуется между атомами металла и неметалла, сильно отличающимися по электроотрицательности.


Например: CaF 2 KCl Na 2 O MgBr 2 и т. д.

Ковалентная неполярная и полярная связи

Ковалентной связью называется связывание атомов с помощью общих (поделенных между ними) электронных пар.

Ковалентная неполярная связь

Рассмотрим возникновение ковалентной неполярной связи на примере образования молекулы водорода из двух атомов водорода. Этот процесс уже является типичной химической реакцией, потому что из одного вещества (атомарного водорода) образуется другое - молекулярный водород. Внешним признаком энергетической "выгодности" этого процесса является выделение большого количества теплоты.


Электронные оболочки атомов водорода (с одним s-электроном у каждого атома) сливаются в общее электронное облако (молекулярную орбиталь), где оба электрона "обслуживают" ядра независимо от того, "свое" это ядро или "чужое". Новая электронная оболочка подобна завершенной электронной оболочке инертного газа гелия из двух электронов:1s 2 .


На практике используют более простые способы. Например, американский химик Дж. Льюис в 1916 году предложил обозначать электроны точками рядом с символами элементов. Одна точка обозначает один электрон. В этом случае образование молекулы водорода из атомов записывается так:



Рассмотрим связывание двух атомов хлора 17 Cl (заряд ядра Z = 17) в двухатомную молекулу с позиций строения электронных оболочек хлора.


На внешнем электронном уровне хлора содержится s 2 + p 5 = 7 электронов. Поскольку электроны нижних уровней не принимают участия в химическом взаимодействии, точками обозначим только электроны внешнего третьего уровня. Эти внешние электроны (7 штук) можно расположить в виде трех электронных пар и одного неспаренного электрона.


После объединения в молекулу из неспаренных электронов двух атомов получается новая электронная пара:


При этом каждый из атомов хлора оказывается в окружении ОКТЕТА электронов. В этом легко убедиться, если обвести кружком любой из атомов хлора.



Ковалентную связь образует только пара электронов, находящаяся между атомами. Она называется поделенной парой. Остальные пары электронов называют неподеленными парами. Они заполняют оболочки и не принимают участие в связывании.


Атомы образуют химические связи в результате обобществления такого количества электронов, чтобы приобрести электронную конфигурацию, подобную завершенной электронной конфигурации атомов благородных элементов.


По теории Льюиса и правилу октета связь между атомами может осуществляться не обязательно одной, но и двумя и даже тремя поделенными парами, если этого требует правило октета. Такие связи называются двойными и тройными.


Например, кислород может образовывать двухатомную молекулу с октетом электронов у каждого атома только тогда, когда между атомами помещаются две поделенные пары:



Атомы азота (2s 2 2p 3 на последней оболочке) также связываются в двухатомную молекулу, но для организации октета электронов им требуется расположить между собой уже три поделенные пары:



Вывод: ковалентная неполярная связь возникает между атомами с одинаковой электроотрицательностью, т. е. между атомами одного химического элемента - неметалла.

Например: в молекулах H 2 Cl 2 N 2 P 4 Br 2 - ковалентная неполярная связь.

Ковалентная связь

Полярная ковалентная связь занимает промежуточное положение между чисто ковалентной связью и ионной связью. Так же, как и ионная, она может возникнуть только между двумя атомами разных видов.


В качестве примера рассмотрим образование воды в реакции между атомами водорода (Z = 1) и кислорода (Z = 8). Для этого удобно сначала записать электронные формулы для внешних оболочек водорода (1s 1) и кислорода (...2s 2 2p 4).



Оказывается, для этого необходимо взять именно два атома водорода на один атом кислорода. Однако природа такова, что акцепторные свойства атома кислорода выше, чем у атома водорода (о причинах этого - чуть позже). Поэтому связывающие электронные пары в формуле Льюиса для воды слегка смещены к ядру атома кислорода. Связь в молекуле воды - полярная ковалентная, а на атомах появляются частичные положительные и отрицательные заряды.


Вывод: ковалентная полярная связь возникает между атомами с разной электроотрицательностью, т. е. между атомами разных химических элементов - неметаллов.


Например: в молекулах HCl, H 2 S, NH 3 , P 2 O 5 , CH 4 - ковалентная полярная связь.

Структурные формулы

В настоящее время принято изображать электронные пары (то есть химические связи) между атомами черточками Каждая черточка - это поделенная пара электронов. В этом случае уже знакомые нам молекулы выглядят так:



Формулы с черточками между атомами называются структурными формулами. Чаще в структурных формулах не изображают неподеленные пары электронов


Структурные формулы очень хороши для изображения молекул: они четко показывают - как атомы связаны между собой, в каком порядке, какими связями.


Связывающая пара электронов в формулах Льюиса - то же самое, что одна черточка в структурных формулах.


Двойные и тройные связи имеют общее название - кратные связи. О молекуле азота также говорят, что она имеет порядок связи, равный трем. В молекуле кислорода порядок связи равен двум. Порядок связи в молекулах водорода и хлора - один. У водорода и хлора уже не кратная, а простая связь.


Порядок связи - это число обобществленных поделенных пар между двумя связанными атомами. Порядок связи выше трех не встречается.

Понятие химической связи имеет немаловажное значение в различных областях химии как науки. Связано это с тем, что именно с ее помощью отдельные атомы способны соединяться в молекулы, образуя всевозможные вещества, которые, в свою очередь, являются предметом химических исследований.

С многообразием атомов и молекул связано возникновение различных типов связей между ними. Для разных классов молекул характерны свои особенности распределения электронов, а значит, и свои виды связей.

Основные понятия

Химической связью называют совокупность взаимодействий, которые приводят к связыванию атомов с образованием устойчивых частиц более сложного строения (молекул, ионов, радикалов), а также агрегатов (кристаллов, стекол и прочего). Природа этих взаимодействий носит электрический характер, а возникают они при распределении валентных электронов в сближающихся атомах.

Валентностью принято называть способность того или иного атома образовывать определенное число связей с другими атомами. В ионных соединениях за значение валентности принимают число отданных или присоединенных электронов. В ковалентных соединениях она равна количеству общих электронных пар.

Под степенью окисления понимают условный заряд, который мог бы быть на атоме, если бы все полярные ковалентные связи имели бы ионный характер.

Кратностью связи называют число обобществленных электронных пар между рассматриваемыми атомами.

Связи, рассматриваемые в различных разделах химии, можно разделить на два вида химических связей: те, которые приводят к образованию новых веществ (внутримолекулярные), и те, которые возникают между молекулами (межмолекулярные).

Основные характеристики связи

Энергией связи называют такую энергию, которая требуется для разрыва всех имеющихся связей в молекуле. Также это энергия, выделяющаяся в ходе образования связи.

Длиной связи именуют такое расстояние между соседними ядрами атомов в молекуле, при котором силы притяжения и отталкивания уравновешены.

Эти две характеристики химической связи атомов являются мерой ее прочности: чем меньше длина и больше энергия, тем связь прочнее.

Валентным углом принято называть угол между представляемыми линиями, проходящими по направлению связи через ядра атомов.

Методы описания связей

Наиболее распространены два подхода к объяснению химической связи, заимствованные из квантовой механики:

Метод молекулярных орбиталей. Он рассматривает молекулу в качестве совокупности электронов и ядер атомов, причем каждый отдельно взятый электрон движется в поле действия всех других электронов и ядер. Молекула имеет орбитальное строение, а все ее электроны распределены по этим орбитам. Также этот метод носит название МО ЛКАО, что расшифровывается как "молекулярная орбиталь - линейная комбинация

Метод валентных связей. Представляет молекулу системой двух центральных молекулярных орбиталей. При этом каждая из них соответствует одной связи между двумя расположенными по соседству атомами в молекуле. Основывается метод на следующих положениях:

  1. Образование химической связи осуществляется парой электронов, имеющих противоположные спины, которые расположены между двумя рассматриваемыми атомами. Образованная электронная пара принадлежит двум атомам в равной степени.
  2. Число связей, образованных тем или иным атомом, равняется числу неспаренных электронов в основном и возбужденном состоянии.
  3. Если электронные пары не принимают участия в образовании связи, то их называют неподеленными.

Электроотрицательность

Определить тип химической связи в веществах можно, основываясь на разнице в значениях электроотрицательностей составляющих ее атомов. Под электроотрицательностью понимают способность атомов оттягивать на себя общие электронные пары (электронное облако), что приводит к поляризации связи.

Существуют различные способы определения значений электроотрицательностей химических элементов. Однако наиболее применяемой является шкала, основанная на термодинамических данных, которая была предложена еще в 1932 году Л. Полингом.

Чем значительнее разница в электроотрицательностях атомов, тем в большей степени проявляется ее ионность. Напротив, равные или близкие значения электроотрицательности указывают на ковалентный характер связи. Иначе говоря, определить, какая химическая связь наблюдается в той или иной молекуле, можно математически. Для этого нужно вычислить ΔХ - разность электроотрицательностей атомов по формуле: ΔХ=|Х 1 2 |.

  • Если ΔХ>1,7, то связь является ионной.
  • Если 0,5≤ΔХ≤1,7, то ковалентная связь носит полярный характер.
  • Если ΔХ=0 или близка к нему, то связь относится к ковалентной неполярной.

Ионная связь

Ионной называется такая связь, которая появляется между ионами или за счет полного оттягивания общей электронной пары одним из атомов. В веществах этот тип химической связи осуществляется силами электростатического притяжения.

Ионы - это заряженные частицы, образующиеся из атомов в результате присоединения или отдачи электронов. Если атом принимает электроны, то приобретает отрицательный заряд и становится анионом. Если же атом отдает валентные электроны, то становится положительно заряженной частицей, называемой катионом.

Она характерна для соединений, образованных при взаимодействии атомов типичных металлов с атомами типичных неметаллов. Основной этого процесса является стремление атомов приобрести устойчивые электронные конфигурации. А типичным металлам и неметаллам для этого нужно отдать или принять всего 1-2 электрона, что они с легкостью и делают.

Механизм образования ионной химической связи в молекуле традиционно рассматривают на примере взаимодействия натрия и хлора. Атомы щелочного металла с легкостью отдают электрон, перетягиваемый атомом галогена. В результате образуется катион Na + и анион Cl - , которые удерживаются рядом с помощью электростатического притяжения.

Идеальной ионной связи не существует. Даже в таких соединениях, которые зачастую относят к ионным, окончательного перехода электронов от атома к атому не происходит. Образованная электронная пара все-таки остается в общем пользовании. Поэтому говорят о степени ионности ковалентной связи.

Ионная связь характеризуется двумя основными свойствами, связанными друг с другом:

  • ненаправленность, т. е. электрическое поле вокруг иона имеет форму сферы;
  • ненасыщаемость, т. е. число противоположно заряженных ионов, которое может разместиться вокруг какого-либо иона, определяется их размерами.

Ковалентная химическая связь

Связь, образующаяся при перекрывании электронных облаков атомов неметаллов, то есть осуществляющаяся общей электронной парой, называется ковалентной связью. Число обобществленных пар электронов определяет кратность связи. Так, атомы водорода связаны одинарной связью Н··Н, а атомы кислорода образуют двойную связь О::О.

Существует два механизма ее образования:

  • Обменный - каждый атом представляет для образования общей пары по одному электрону: А· + ·В= А:В, при этом в осуществлении связи участвуют внешние атомные орбитали, на которых расположены по одному электрону.
  • Донорно-акцепторный - для образования связи один из атомов (донор) предоставляет пару электронов, а второй (акцептор) - свободную орбиталь для ее размещения: А + :В= А:В.

Способы перекрывания электронных облаков при образовании ковалентной химической связи также различны.

  1. Прямое. Область перекрывания облаков лежит на прямой воображаемой линии, соединяющей ядра рассматриваемых атомов. При этом образуются σ-связи. От типа электронных облаков, подвергающихся перекрыванию, зависит вид химической связи, которая при этом возникает: s-s, s-p, p-p, s-d или p-d σ-связи. В частице (молекуле или ионе) между двумя соседними атомами возможно осуществление только одной σ-связи.
  2. Боковое. Осуществляется по обе стороны от линии, соединяющей ядра атомов. Так образуется π-связь, причем также возможны ее разновидности: p-p, p-d, d-d. Отдельно от σ-связи π-связь никогда не образуется, она может быть в молекулах, содержащих кратные (двойные и тройные) связи.

Свойства ковалентной связи

Именно ими определяются химические и физические особенности соединений. Главными свойствами любой химической связи в веществах является ее направленность, полярность и поляризуемость, а также насыщаемость.

Направленностью связи обусловлены особенности молекулярного строения веществ и геометрическая форма их молекул. Суть ее состоит в том, что наилучшее перекрывание электронных облаков возможно при определенной их ориентации в пространстве. Выше уже рассмотрены варианты образования σ- и π-связи.

Под насыщаемостью понимают способность атомов образовывать определенное число химических связей в молекуле. Количество ковалентных связей для каждого атома ограничивается числом внешних орбиталей.

Полярность связи зависит от разницы в значениях электроотрицательностей атомов. От нее зависит равномерность распределения электронов между ядрами атомов. Ковалентная связь по данному признаку может быть полярной или неполярной.

  • Если общая электронная пара в равной степени принадлежит каждому из атомов и расположена от их ядер на одинаковом расстоянии, то ковалентная связь является неполярной.
  • Если же общая пара электронов смещается к ядру одного из атомов, то образуется ковалентная полярная химическая связь.

Поляризуемость выражается смещением электронов связи под действием внешнего электрического поля, которое может принадлежать другой частице, соседним связям в той же молекуле или исходить от внешних источников электромагнитных полей. Так, ковалентная связь под их влиянием может менять свою полярность.

Под гибридизацией орбиталей понимают изменение их форм при осуществлении химической связи. Это необходимо для достижения наиболее эффективного их перекрывания. Существуют следующие виды гибридизации:

  • sp 3 . Одна s- и три p-орбитали образуют четыре "гибридные" орбитали одинаковой формы. Внешне напоминает тетраэдр с углом между осями 109°.
  • sp 2 . Одна s- и две p-орбитали образуют плоский треугольник с углом между осями 120°.
  • sp. Одна s- и одна p-орбиталь образуют две "гибридные" орбитали с углом между их осями 180°.

Особенностью строения атомов металлов является довольно большой радиус и наличие небольшого количества электронов на внешних орбиталях. Вследствие этого в таких химических элементах связь ядра и валентных электронов относительно слаба и легко разрывается.

Металлической связью называют такое взаимодействие между атомами-ионами металлов, которое осуществляется с помощью делокализованных электронов.

В частицах металла валентные электроны могут легко покидать внешние орбитали, как, впрочем, и занимать вакантные места на них. Таким образом, в разные моменты времени одна и та же частица может быть атомом и ионом. Оторвавшиеся от них электроны свободно перемещаются по всему объему кристаллической решетки и осуществляют химическую связь.

Этот тип связи имеет сходства с ионной и ковалентной. Так же как и для ионной, для существования металлической связи необходимы ионы. Но если для осуществления электростатического взаимодействия в первом случае нужны катионы и анионы, то во втором роль отрицательно заряженных частиц играют электроны. Если сравнивать металлическую связь с ковалентной, то для образования обеих необходимы общие электроны. Однако, в отличие от полярной химической связи, они локализованы не между двумя атомами, а принадлежат всем частицам металла в кристаллической решетке.

Металлической связью обусловлены особенные свойства практически всех металлов:

  • пластичность, присутствует благодаря возможности смещения слоев атомов в кристаллической решетке, удерживаемых электронным газом;
  • металлический блеск, который наблюдается из-за отражения световых лучей от электронов (в порошкообразном состоянии нет кристаллической решетки и, значит, перемещающихся по ней электронов);
  • электропроводность, которая осуществляется потоком заряженных частиц, а в данном случае мелкие электроны свободно перемещаются среди крупных ионов металла;
  • теплопроводность, наблюдается благодаря способности электронов переносить теплоту.

Этот тип химической связи иногда называют промежуточной между ковалентной и межмолекулярным взаимодействием. Если атом водорода имеет связь с одним из сильно электроотрицательных элементов (таких как фосфор, кислород, хлор, азот), то он способен образовывать дополнительную связь, называемую водородной.

Она гораздо слабее всех рассмотренных выше типов связей (энергия не более 40 кДж/моль), но пренебрегать ею нельзя. Именно поэтому водородная химическая связь на схеме выглядит в виде пунктирной линии.

Возникновение водородной связи возможно благодаря донорно-акцепторному электростатическому взаимодействию одновременно. Большая разница в значениях электроотрицательности приводит к появлению избыточной электронной плотности на атомах О, N, F и других, а также к ее недостатку на атоме водорода. В том случае если между такими атомами нет существующей химической связи, при их достаточно близком расположении активизируются силы притяжения. При этом протон является акцептором электронной пары, а второй атом - донором.

Водородная связь может возникать как между соседними молекулами, например, воды, карбоновых кислот, спиртов, аммиака, так и внутри молекулы, например, салициловой кислоты.

Наличием водородной связи между молекулами воды объясняется ряд ее уникальных физических свойств:

  • Значения ее теплоемкости, диэлектрической проницаемости, температур кипения и плавления в соответствии с расчетами должны быть значительно меньше реальных, что объясняется связанностью молекул и необходимостью затрачивать энергию на разрыв межмолекулярных водородных связей.
  • В отличие от других веществ, при понижении температуры объем воды увеличивается. Это происходит благодаря тому, что молекулы занимают определенное положение в кристаллической структуре льда и отдаляются друг от друга на длину водородной связи.

Особую роль эта связь играет для живых организмов, поскольку ее наличием в молекулах белков обуславливается их особая структура, а значит, и свойства. Кроме того, нуклеиновые кислоты, составляя двойную спираль ДНК, также связаны именно водородными связями.

Связи в кристаллах

Подавляющее большинство твердых тел имеет кристаллическую решетку - особое взаимное расположение образующих их частиц. При этом соблюдается трехмерная периодичность, а в узлах располагаются атомы, молекулы или ионы, которые соединены воображаемыми линиями. В зависимости от характера этих частиц и связей между ними все кристаллические структуры делят на атомные, молекулярные, ионные и металлические.

В узлах ионной кристаллической решетки находятся катионы и анионы. Причем каждый из них окружен строго определенным числом ионов только с противоположным зарядом. Типичный пример - хлорид натрия (NaCl). Для них обычны высокие температуры плавления и твердость, так как для их разрушения требуется много энергии.

В узлах молекулярной кристаллической решетки расположены молекулы веществ, образованные ковалентной связью (например, I 2). Связаны они друг с другом слабым ван-дер-ваальсовым взаимодействием, а следовательно, такую структуру легко разрушить. Такие соединения имеют низкие температуры кипения и плавления.

Атомную кристаллическую решетку образуют атомы химических элементов, обладающих высокими значениями валентности. Связаны они прочными ковалентными связями, а значит, вещества отличаются высокими температурами кипения, плавления и большой твердостью. Пример - алмаз.

Таким образом, все типы связей, имеющихся в химических веществах, имеют свои особенности, которыми объясняются тонкости взаимодействия частиц в молекулах и веществах. От них зависят свойства соединений. Ими обуславливаются все процессы, происходящие в окружающей среде.

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Внутримолекулярные химические связи

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными .

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов , в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.

– это способность атома притягивать (удерживать) внешние (валентные) электроны . Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А: В . Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4<ΔЭО<2 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .

Основные типы химических связей — ковалентная , ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

Ковалентная связь этохимическая связь, образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами ) или атомов одного элемента.

Основные свойства ковалентных связей

  • направленность ,
  • насыщаемость ,
  • полярность ,
  • поляризуемость .

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 108 о 28′.

Насыщаемость — это спосбность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется .

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .

Пример . Рассмотрим строение молекулы водорода H 2 . Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Люьиса неплохо помогают при работе с элементами второго периода.

H . + . H = H:H

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

Дипольный момент неполярных связей равен 0.

Примеры : H 2 (H-H), O 2 (O=O), S 8 .

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами ) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Примеры: HCl, CO 2 , NH 3 .

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А . + . В= А:В

2. образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: + B= А:В

При этом один из атомов предоставляет неподеленную электронную пару (донор ), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей .

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH 4 + , в ионах органических аминов , например, в ионе метиламмония CH 3 -NH 2 + ;

– в комплексных соединениях , химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO 3 , NaNO 3 , в некоторых других соединениях азота;

– в молекуле озона O 3 .

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении . Кратность связи достаточно легко можно определить из значения атомов, образующих молекулу.

Например , в молекуле водорода H 2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O 2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

В молекуле азота N 2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

Длину химической связи можно примерно оценить по радиусам атомов , образующих связь, или по кратности связи , если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.

Энергия связи

Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается , т.к. увеличивается длина связи.

Ионная химическая связь

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов .

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

Пример . Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11Na ) 2 ) 8 ) 1 — 1e = +11Na +) 2 ) 8

Пример . Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17Cl ) 2 ) 8 ) 7 + 1e = +17Cl ) 2 ) 8 ) 8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы , но и группы атомов . Например: ион аммония NH 4 + , сульфат-ион SO 4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na 2 + SO 4 2- .

Наглядно обобщим различие между ковалентными и ионным типами связи :

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов , образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов . Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями .

Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы . Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь , т.к. общие электроны удерживают катионы металлов, расположенные слоями, вместе , создавая таким образом достаточно прочную металлическую кристаллическую решетку . При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

Межмолекулярные взаимо-действия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляеются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами . Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодейстий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения .

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь . Она характерна прежде всего для соединений фтора с водородом , а также кислорода с водородом , в меньшей степени азота с водородом .

Водородные связи возникают между следующими веществами:

фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H 2 O (пар, лед, жидкая вода):

раствор аммиака и органических аминов — между молекулами аммиака и воды;

органические соединения, в которых связи O-H или N-H : спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение тепературы кипения.

Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H 2 O-H 2 S-H 2 Se-H 2 Te мы не наблюдаем линейное изменение температур кипения.

А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.

.

Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрица-тельности элементов, а в группах – их падения. Элементы по электроот-рицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).­­­ ­ ­­ ­­ ­

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь.


Связь, которая образуется в результате взаимодействия относите-льно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свобо-дные электроны, оторвавшиеся от атома, перемещаются между положи-тельными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристал-лической решетки металлов.

Водородная связь.


Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2­ O, NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также всле-дствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.