Прибор гейгера. Счетчик Гейгера-Мюллера: принцип работы и назначение


Хотим мы или нет, но радиация прочно вошла в нашу жизнь и уходить не собирается. Нам нужно научиться жить с этим, одновременно полезным и опасным, явлением. Радиация проявляет себя невидимыми и неощутимыми излучениями, и без специальных приборов обнаружить их невозможно.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» - работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений.

Как появился счетчик Гейгера - Мюллера

Немецкий физик Ганс Гейгер, работавший в лаборатории Эрнста Резерфорда, в 1908 году предложил принцип работы счетчика «заряженных частиц» как дальнейшее развитие уже известной ионизационной камеры, которая представляла собой электрический конденсатор, наполненный газом при небольшом давлении. Она применялась еще Пьером Кюри с 1895 года для изучения электрических свойств газов. У Гейгера возникла идея использовать ее для обнаружения ионизирующих излучений как раз потому, что эти излучения оказывали прямое воздействие на степень ионизации газа.

В 1928 году Вальтер Мюллер, под началом Гейгера, создает несколько типов счетчиков радиации, предназначенных для регистрации различных ионизирующих частиц. Создание счетчиков было очень острой необходимостью, без которой невозможно было продолжать исследование радиоактивных материалов, поскольку физика, как экспериментальная наука, немыслима без измерительных приборов. Гейгер и Мюллер целенаправленно работали над созданием счетчиков, чувствительных к каждому из открытых к тому видов излучений: α, β и γ (нейтроны открыли только в 1932 году).

Счетчик Гейгера-Мюллера оказался простым, надежным, дешевым и практичным датчиком радиации. Хотя он не является самым точным инструментом для исследования отдельных видов частиц или излучений, однако на редкость подходит в качестве прибора для общего измерения интенсивности ионизирующих излучений. А в сочетании с другими детекторами используется физиками и для точнейших измерений при экспериментах.

Ионизирующие излучения

Чтобы лучше понять работу счетчика Гейгера-Мюллера, полезно иметь представление об ионизирующих излучениях вообще. По определению, к ним относится то, что может вызвать ионизацию вещества, находящегося в нормальном состоянии. Для этого необходима определенная энергия. Например, радиоволны или даже ультрафиолетовый свет не относятся к ионизирующим излучениям. Граница начинается с «жесткого ультрафиолета», он же «мягкий рентген». Этот вид является фотонным видом излучения. Фотоны большой энергии принято называть гамма-квантами.

Впервые разделил ионизирующие излучения на три вида Эрнст Резерфорд. Это было сделано на экспериментальной установке при помощи магнитного поля в вакууме. Впоследствии выяснилось, что это:

α - ядра атомов гелия
β - электроны с высокой энергией
γ - гамма-кванты (фотоны)

Позже были открыты нейтроны. Альфа-частицы легко задерживаются даже обычной бумагой, бета-частицы имеют немного большую проникающую способность, а гамма-лучи - самую высокую. Наиболее опасны нейтроны (на расстоянии до многих десятков метров в воздухе!). Из-за их электрической нейтральности они не взаимодействуют с электронными оболочками молекул вещества. Но попав в атомное ядро, вероятность чего достаточно высока, приводят к его нестабильности и распаду, с образованием, как правило, радиоактивных изотопов. А уже те, в свою очередь, распадаясь, сами образуют весь «букет» ионизирующих излучений. Хуже всего то, что облученный предмет или живой организм сам становится источником радиации на протяжении многих часов и суток.

Устройство счетчика Гейгера-Мюллера и принцип его работы

Газоразрядный счетчик Гейгера-Мюллера, как правило, выполняется в виде герметичной трубки, стеклянной или металлической, из которой откачан воздух, а вместо него добавлен инертный газ (неон или аргон или их смесь) под небольшим давлением, с примесью галогенов или спирта. По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка - катод, а проволока - анод. К катоду подключают минус от источника постоянного напряжения, а к аноду - через большое постоянное сопротивление - плюс от источника постоянного напряжения. Электрически получается делитель напряжения, в средней точке которого (место соединения сопротивления и анода счетчика) напряжение практически равно напряжению на источнике. Обычно это несколько сотен вольт.

Когда сквозь трубку пролетает ионизирующая частица, атомы инертного газа, и так находящиеся в электрическом поле большой напряженности, испытывают столкновения с этой частицей. Энергии, отданной частицей при столкновении, хватает для отрыва электронов от атомов газа. Образующиеся вторичные электроны сами способны образовать новые столкновения и, таким образом, получается целая лавина электронов и ионов. Под действием электрического поля, электроны ускоряются в направлении анода, а положительно заряженные ионы газа - к катоду трубки. Таким образом, возникает электрический ток. Но так как энергия частицы уже израсходована на столкновения, полностью или частично (частица пролетела сквозь трубку), то кончается и запас ионизированных атомов газа, что является желательным и обеспечивается кое-какими дополнительными мерами, о которых мы поговорим при разборе параметров счетчиков.

При попадании в счетчик Гейгера-Мюллера заряженной частицы, за счет возникающего тока падает сопротивление трубки, а вместе с ним и напряжение в средней точке делителя напряжения, о которой шла речь выше. Затем сопротивление трубки вследствие возрастания ее сопротивления восстанавливается, и напряжение опять становится прежним. Таким образом, мы получаем отрицательный импульс напряжения. Считая импульсы, мы можем оценить число пролетевших частиц. Особенно велика напряженность электрического поля вблизи анода из-за его малых размеров, что делает счетчик более чувствительным.

Конструкции счетчиков Гейгера-Мюллера

Современные счетчики Гейгера-Мюллера выпускаются в двух основных вариантах: «классическом» и плоском. Классический счетчик выполняют из тонкостенной металлической трубки с гофрированием. Гофрированная поверхность счетчика делает трубку жесткой, устойчивой к внешнему атмосферному давлению и не дает ей сминаться под его действием. На торцах трубки расположены герметизирующие изоляторы из стекла или термореактивной пластмассы. В них же находятся выводы-колпачки для подключения к схеме приборов. Трубка снабжена маркировкой и покрыта прочным изолирующим лаком, не считая, конечно, ее выводов. Полярность выводов также обозначена. Это универсальный счетчик для любых видов ионизирующих излучений, особенно для бета и гамма.

Счетчики, чувствительные к мягкому β-излучению, делаются иначе. Из-за малого пробега β-частиц, их приходится делать плоскими, со слюдяным окошком, которое слабо задерживает бета-излучение, одним из вариантов такого счетчика, является датчик радиации БЕТА-2 . Все остальные свойства счетчиков определяются материалами, из которых их изготавливают.

Счетчики, предназначенные для регистрации гамма-излучения, содержат катод, изготовленный из металлов с большим зарядовым числом, или покрывают такими металлами. Газ крайне плохо ионизируется гамма-фотонами. Но зато гамма-фотоны способны выбить много вторичных электронов из катода, если его выбрать подходящим образом. Счетчики Гейгера-Мюллера для бета-частиц делают с тонкими окнами для лучшей проницаемости частиц, поскольку они являются обычными электронами, всего лишь получившими большую энергию. С веществом они взаимодействуют весьма хорошо и быстро эту энергию теряют.

В случае альфа-частиц дело обстоит еще хуже. Так, несмотря на весьма приличную энергию, порядка нескольких МэВ, альфа-частицы очень сильно взаимодействуют с молекулами, находящимися на пути, и быстро теряют энергию. Если вещество сравнить с лесом, а электрон с пулей, то тогда альфа-частицы придется сравнивать с танком, ломящимся через лес. Впрочем, обычный счетчик хорошо реагирует на α-излучение, но только на расстоянии до нескольких сантиметров.

Для объективной оценки уровня ионизирующих излучений дозиметры на счетчиках общего применения часто снабжают двумя параллельно работающими счетчиками. Один более чувствителен к α и β излучениям, а второй к γ-лучам. Такая схема применения двух счетчиков реализована в дозиметре RADEX RD1008 и в дозиметре-радиометре РАДЭКС МКС-1009 , в котором установлены счетчик БЕТА-2 и БЕТА-2М . Иногда между счетчиками помещают брусок или пластину из сплава, в котором есть примесь кадмия. При попадании нейтронов в такой брусок возникает γ-излучение, которое и регистрируется. Это делается для получения возможности определять нейтронное излучение, к которому простые счетчики Гейгера практически нечувствительны. Еще один способ - покрытие корпуса (катода) примесями, способными придавать чувствительность к нейтронам.

Галогены (хлор, бром) к газу подмешивают для быстрого самогашения разряда. Той же цели служат и пары спирта, хотя спирт в таком случае недолговечен (это вообще особенность спирта) и «протрезвевший» счетчик постоянно начинает «звенеть», то есть, не может работать в предусмотренном режиме. Это происходит где-то после регистрации 1e9 импульсов (миллиарда) что не так уж и много. Счетчики с галогенами намного долговечнее.

Параметры и режимы работы счетчиков Гейгера

Чувствительность счетчиков Гейгера.

Чувствительность счетчика оценивается отношением числа микрорентген от образцового источника к числу вызываемых этим излучением импульсов. Поскольку счетчики Гейгера не предназначены для измерения энергии частиц, точная оценка затруднительна. Счетчики калибруют по образцовым изотопным источникам. Необходимо отметить, что данный параметр у разных типов счетчиков может сильно отличаться, ниже приведены параметры самых распространённых счетчиков Гейгера-Мюллера:

Счетчик Гейгера-Мюллера Бета-2 - 160 ÷ 240 имп / мкР

Счетчик Гейгера-Мюллера Бета-1 - 96 ÷ 144 имп / мкР

Счетчик Гейгера-Мюллера СБМ-20 - 60 ÷ 75 имп / мкР

Счетчик Гейгера-Мюллера СБМ-21 - 6,5 ÷ 9,5 имп / мкР

Счетчик Гейгера-Мюллера СБМ-10 - 9,6 ÷ 10,8 имп / мкР

Площадь входного окна или рабочая зона

Площадь датчика радиации, через которую пролетают радиоактивные частицы. Данная характеристика напрямо связана с габаритами датчика. Чем больше площадь, тем больше частиц уловит счетчик Гейгера-Мюллера. Обычно данный параметр указывается в квадратных сантиметрах.

Счетчик Гейгера-Мюллера Бета-2 - 13,8 см 2

Счетчик Гейгера-Мюллера Бета-1 - 7 см 2

Это напряжение соответствует приблизительно середине рабочей характеристики. Рабочая характеристика составляет плоскую часть зависимости числа регистрируемых импульсов от напряжения, поэтому ее еще называют «плато». В этой точке достигается наибольшая скорость работы (верхний предел измерений). Типичное значение 400 В.

Ширина рабочей характеристики счетчика.

Это разность между напряжением искрового пробоя и напряжением выхода на плоскую часть характеристики. Типичное значение 100 В.

Наклон рабочей характеристики счетчика.

Наклон измеряется в процентах от числа импульсов на вольт. Он характеризует статистическую погрешность измерений (подсчета числа импульсов). Типичное значение 0.15%.

Допустимая температура эксплуатации счетчика.

Для счетчиков общего применения -50 … +70 градусов Цельсия. Это весьма важный параметр, если счетчик работает в камерах, каналах, и других местах сложного оборудования: ускорителей, реакторов и т.п.

Рабочий ресурс счетчика.

Общее число импульсов, которое счетчик регистрирует до того момента, когда его показания начнут становиться неверными. Для приборов с органическими добавками самогашения, как правило, составляет число 1e9 (десять в девятой степени, или один миллиард). Ресурс считается только в том случае, если к счетчику приложено рабочее напряжение. Если счетчик просто хранится, этот ресурс не расходуется.

Мертвое время счетчика.

Это время (время восстановления), в течение которого счетчик проводит ток после срабатывания от пролетевшей частицы. Существование такого времени означает, что для частоты импульсов есть верхний предел, и это ограничивает диапазон измерений. Типичное значение 1e-4 с, то есть десять микросекунд.

Нужно отметить, что благодаря мертвому времени, датчик может оказаться «зашкаленным» и молчать в самый опасный момент (например, самопроизвольной цепной реакции на производстве). Такие случаи бывали, и для борьбы с ними применяют свинцовые экраны, закрывающие часть датчиков аварийных систем сигнализации.

Собственный фон счетчика.

Измеряется в свинцовых камерах с толстыми стенками для оценки качества счетчиков. Типичное значение 1 … 2 импульса в минуту.

Практическое применение счетчиков Гейгера

Советская и теперь российская промышленность выпускает много типов счетчиков Гейгера-Мюллера. Вот несколько распространенных марок: СТС-6, СБМ-20, СИ-1Г, СИ21Г, СИ22Г, СИ34Г, счетчики серии «Гамма», торцевые счетчики серии «Бета » и есть еще множество других. Все они применяются для контроля и измерений радиации: на объектах ядерной промышленности, в научных и учебных учреждениях, в гражданской обороне, медицине, и даже быту. После чернобыльской аварии, бытовые дозиметры , ранее неизвестные населению даже по названию, стали очень популярными. Появилось много марок бытовых дозиметров. Все они используют именно счетчик Гейгера-Мюллера в качестве датчика радиации. В бытовых дозиметрах устанавливают от одного до двух трубок или торцевых счетчиков.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИАЦИОННЫХ ВЕЛИЧИН

Долгое время была распространена единица измерения Р (рентген). Однако, при переходе к системе СИ появляются другие единицы. Рентген - это единица экспозиционной дозы, «количество радиации», которое выражается числом образовавшихся ионов в сухом воздухе. При дозе в 1 Р в 1 см3 воздуха образуется 2.082e9 пар ионов (что соответствует 1 единице заряда СГСЭ). В системе СИ экспозиционную дозу выражают в кулонах на килограмм, а с рентгеном это связано уравнением:

1 Кл/кг = 3876 Р

Поглощенная доза излучения измеряется в джоулях на килограмм и называется Грей. Это взамен устаревшей единицы рад. Мощность поглощенной дозы измеряется в греях в секунду. Мощность экспозиционной дозы (МЭД) раньше измерявшаяся в рентгенах в секунду, теперь измеряется в амперах на килограмм. Эквивалентная доза излучения, при которой поглощенная доза составляет 1 Гр (грей) и коэффициент качества излучения 1, называется Зиверт. Бэр (биологический эквивалент рентгена) - это сотая часть зиверта, в настоящее время уже считается устаревшей. Тем не менее, и сегодня очень активно применяются все устаревшие единицы.

Главными понятиями в радиационных измерениях считаются доза и мощность. Доза - это число элементарных зарядов в процессе ионизации вещества, а мощность - это скорость образования дозы за единицу времени. А уж в каких единицах это выражается, это дело вкуса и удобства.

Даже минимальная доза опасна в смысле отдаленных последствий для организма. Расчет опасности достаточно прост. Например, ваш дозиметр показывает 300 миллирентген в час. Если вы останетесь в этом месте на сутки, вы получите дозу 24*0.3 = 7.2 рентген. Это опасно и нужно как можно скорее уходить отсюда. Вообще, обнаружив даже слабую радиацию надо уходить от нее и проверять ее даже на расстоянии. Если она «идет за вами», вас можно «поздравить», вы попали под нейтроны. А не каждый дозиметр может на них отреагировать.

Для источников радиации используют величину, характеризующую число распадов за единицу времени, ее называют активностью и измеряют также множеством различных единиц: кюри, беккерель, резерфорд и некоторыми другими. Величина активности, замеренная дважды с достаточным разносом по времени, если она убывает, позволяет рассчитать время, по закону радиоактивного распада, когда источник станет достаточно безопасным.

Давно не проблема купить прибор под условным названием «бытовой дозиметр» (были б деньги - в этом смысле, Фукусима радиофобам и радиофилам (TM) подгадила), но думаю, что этот прибор было бы интересно сделать своими руками.

Сердцем нашего прибора будет счетчик Гейгера. Мы знаем, конечно, что у этого детектора есть куча недостатков и вообще «прибор должен быть сцинтилляционным», но сцинтилляционный радиометр существенно сложнее и у меня под него задуман следующий пост. Тем более, у счетчика Гейгера-Мюллера есть и ряд неоспоримых достоинств.

Итак, начнем.

Детектор

Итак, счетчик Гейгера-Мюллера. (рис.1) Простейшее устройство, состоящее из двух электродов, помещенных в газовую среду при низком давлении - катод, имеющий большую площадь, и анод в виде более-менее тонкой проволоки, создающий локальное поле большой напряженности. в котором развивается процесс размножения ионов, за счет которого единственная ионная пара может вызвать мощную лавину ионизации и зажигание самостоятельного разряда.


Рис. 1. Счетчик Гейгера-Мюллера. 1 - анод, 2 - катод, 3 - баллон, 4 - вывод катода, 5, 6 - пружины, натягивающие нить катода.

По сути счетчик работает, как тиратрон с холодным катодом, только разряд в нем зажигается от ионизации, вызванной не импульсом с сетки, а пролетевшей через газ заряженной частицей. После того, как разряд загорелся, его нужно погасить либо снятием с анода напряжения, либо… Либо он погаснет сам. Но для этого в газовую среду счетчика надо ввести что-то, что под действием разряда перейдет в форму, которая сделает газ непрозрачным для ультрафиолетового излучения и из-за этого исчезнет один из факторов поддержания самостоятельного разряда - фотоэлектронная эмиссия. Таких добавок две: спирт и галогены (хлор, бром и йод). Первый в разряде разлагается, превращаясь, грубо говоря, в сажу, и потом обратно в спирт не превращается, и через несколько десятков тысяч импульсов кончится и счетчику конец. А галогены становятся из молекулярных атомарными, причем процесс обратим. Они тоже кончаются - из-за того, что атомарные галогены с легкостью реагируют со всем попало, включая стенки счетчика, но чаще они успевают рекомбинировать друг с другом, поэтому галогенные счетчики гораздо более долговечны, выдерживая миллиарды импульсов. Нас интересуют в первую очередь галогенные счетчики, потому что:

А) они долговечнее,
б) они работают при 400-500 В, а не при полутора тысячах, как спиртовые,
в) они просто наиболее распространены.
В таблице 1 я привел несколько распространенных счетчиков Гейгера и их основные параметры.

Таблица 1.
Основные параметры некоторых счетчиков Гейгера-Мюллера.


Примечания: 1 - чувствительность к альфа-излучению не регламентирована; 2 - мелкосерийный счетчик, данные по нему скудны.

Чувствительность

Выбирая счетчик Гейгера для нашего дозиметра, нужно в первую очередь смотреть на его чувствительность. Ведь вряд ли вы хотите прибор, который что-то покажет только там, где пару часов назад взорвалась «Кузькина мать». А таких счетчиков, между тем, предостаточно, и за их почти полной бесполезностью для обывателя, они очень дешево стоят. Это всевозможные СИ-3БГ, СИ-13Г и прочие «счетчики судного дня», стоящие в армейских дозиметрах для работы на верхнем пределе измерений. Чем счетчик чувствительнее, тем больше импульсов в секунду он при одном и том же уровне радиации даст. Классический счетчик СБМ-20 (он же более ранних выпусков носил название СТС-5), который традиционно ставили во все перестроечно-постчернобыльские «трещалки», при естественном фоне в 12 мкР/ч дает около 18 импульсов в минуту. От этой цифры удобно плясать, считая чувствительность счетчика в «СБМ-20».

Что нам дает чувствительность счетчика? Точность и скорость реакции. Дело в том, что частицы радиоактивных излучений прилетают к нам не по расписанию, а как придется, да и счетчик какую-то из них пропустит, а от какой-то сработает (от фотонов гамма-излучения - примерно от одного из нескольких сотен). Так что импульсы от счетчика Гейгера (да и от любого счетного детектора радиации) идут в абсолютно случайные моменты времени с непредсказуемыми интервалами между ними. И посчитав количество импульсов в одну минуту, другую, третью - мы получим различные значения. И среднеквадратичное отклонение этих значений, то есть погрешность определения скорости счета, будет пропорционален квадратному корню из числа зарегистрированных импульсов. Чем больше будет импульсов, тем меньше будет относительная (в процентах от измеряемой величины) погрешность их счета: .
Когда у нас детектор - упомянутый «эталонный» СБМ-20, а время счета - 40 секунд (так делали в простых бытовых дозиметрах, непосредственно показывая число сосчитанных импульсов в качестве уровня мощности дозы в мкР/ч), на естественном фоне количество импульсов - ~10 штук. А это значит, что среднеквадратическое отклонение - около трех. А погрешность при 95% доверительной вероятности - вдвое больше, то есть 6 импульсов. Таким образом, мы имеем грустную картинку: показания дозиметра 10 мкР/ч означают, что мощность дозы составляет где-то от 4 до 16 мкР/ч. А об обнаружении аномалии мы сможем говорить только когда дозиметр покажет отклонение в три сигмы, то есть больше 20 мкР/ч…

Чтобы точность увеличить, можно увеличить время счета. Если мы сделаем его три минуты, то есть в четыре раза больше, мы учетверим и число импульсов, а значит, удвоим точность. Но тогда мы потеряем реакцию прибора на короткие всплески излучения, например, на прошедшего мимо вас «вашего сиятельства» после сцинтиграфии или радиойодтерапии или наоборот, когда вы проходите на радиобазаре мимо часов с СПД. А взяв вчетверо более чувствительный детектор (4 параллельно соединенных СБМ-20, один СБМ-19, СБТ-10 или СИ-8Б) и оставив то же время измерения, мы и точность повысим, и скорость реакции сохраним.

Альфа, бета, гамма и конструкция счетчиков

Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.

Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.

А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы. Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б - где-то посередине между ними.

А вот теперь что касается пролета насквозь. Дело в том, что альфа- и бета-частицы счетчик Гейгера регистрирует практически все, что смогли проникнуть внутрь. А вот с гамма-квантами все печально. Чтобы гамма-квант вызвал импульс в счетчике, он должен выбить из его стенки электрон. Этот электрон должен преодолеть толщу металла от точки, где произошло взаимодействие, до внутренней поверхности, и поэтому «рабочий объем» детектора, где происходит его взаимодействие с фотонами гамма-излучения - это тончайший, в несколько микрон, слой металла. Отсюда ясно, что эффективность счетчика для гамма-излучения очень мала - в сто и более раз меньше, чем для бета-излучения.

Питание

Для работы счетчик Гейгера требует высоковольтного питания. Типичные галогенные приборы советского-российского производства требуют напряжения около 400 В, многие западные счетчики рассчитаны на 500 или 900 В. Некоторые счетчики требуют напряжения до полутора киловольт - это старые счетчики со спиртовым гашением типа МС и ВС, счетчики рентгеновского излучения для рентгеноструктурного анализа, нейтронные. Нас они не будут сильно интересовать. Питание на счетчик подается через балластное сопротивление в несколько мегаом - оно ограничивает импульс тока и снижает напряжение на счетчике после прохождения импульса, облегчая гашение. Величина этого сопротивления приводится в справочных данных на конкретный прибор - его слишком малая величина сокращает жизнь детектора, а слишком большая - увеличивает мертвое время. Обычно его можно взять около 5 МОм.

При увеличении напряжения от нуля счетчик Гейгера сначала работает, как обыкновенная ионизационная камера, а затем, как пропорциональный счетчик: каждая из пар ионов, которые образовались при пролете частицы, порождает небольшую ионов, увеличивая ионный ток в сотни и тысячи раз. При этом на нагрузочном сопротивлении в цепи счетчика уже можно обнаружить очень слабые, измеряемые милливольтами, импульсы. С ростом напряжения лавины становятся все больше, и в какой-то момент самые сильные из них начинают поддерживать сами себя, зажигая самостоятельный разряд. В этот момент вместо слабых, милливольтовых импульсов от лавин, проходящих через межэлектродное пространство и исчезающих на электродах, появляются гигантские, амплитудой в несколько десятков вольт! И их частота с ростом напряжения быстро растет, пока вспышку разряда не начнет вызывать каждая лавина Очевидно, что при дальнейшем росте напряжения скорость счета должна перестать расти. Так оно и происходит: на зависимости чувствительности от напряжения наблюдается плато .

Все же рост напряжения не оставляет скорость счета неизменной: разряд может возникнуть и просто так, от спонтанной эмиссии. И с ростом напряжения вероятность такого разряда только увеличивается. Поэтому плато получается наклонным, а начиная с некоторого напряжения скорость счета начинает быстро расти, а затем разряд переходит в непрерывный. В таком режиме, понятное дело, счетчик не только не выполняет своей функции, но и быстро выходит из строя.


Рис. 2. Зависимость скорости счета счетчика Гейгера от напряжения питания.

Наличие плато существенно облегчает питание счетчика Гейгера - ему не требуются высокостабильные источники высокого напряжения, какие требуются для сцинтилляционных счетчиков. Длина этого плато для низковольтных счетчиков - 80-100 В. Во многих советских бытовых дозиметрах кооперативного происхождения и практически во всех любительских конструкциях того времени питание счетчика было сделано от преобразователя напряжения на основе блокинг-генератора без всякого намека на стабилизацию. Расчет был таким: при свежей батарейке напряжение на аноде счетчика соответствовало верхней границе плато, так что нижней границы плато высокое напряжение достигало уже при изрядно разряженной батарейке.

Фон и мертвое время

Любой детектор любого излучения всегда имеет некоторый темновой сигнал, регистрируемый, когда на детектор не падает никакое излучение. Счетчик Гейгера-Мюллера - не исключение. Одним из источников темнового фона является упоминавшаяся выше спонтанная эмиссия. Вторым - радиоактивность самого счетчика, что особенно актуально для счетчиков со слюдяным окном, так как природная слюда неизбежно содержит примеси урана и тория. И если последняя практически не зависит ни от чего и является константой для данного экземпляра детектора, то фон от спонтанной эмиссии зависит от величины высокого напряжения, температуры, «возраста» счетчика. Из-за этого становится плохой идеей питать нестабилизированным напряжением счетчик, которым мы будем пользоваться в основном при измерениях низких уровней радиации: собственный фон счетчика от напряжения питания зависит весьма существенно.

Скорость счета от собственного фона достигает у счетчиков Гейгера уровня, соответствующего 3-10 мкР/ч, то есть составляет заметную долю скорости счета при нормальной радиационной обстановке. Особенно велик фон у слюдяных датчиков - СБТ-10, СИ-8Б, «Бета». Так что его обязательно нужно вычитать из результатов измерения. Но для этого его нужно знать. Справочник тут не поможет: там приведены лишь максимальные значения. Чтобы собственный фон измерить, нужен свинцовый «домик» толщиной не менее 5 см, при этом внутреннюю поверхность нужно покрыть листами меди толщиной 2-3 мм и 5 мм оргстеклом. Дело в том, что «домик» будет находиться под обстрелом космических лучей, которые делают сам домик источником рентгеновского излучения, главным образом в характеристических линиях свинца. И если сделать защиту только из свинца, это флюоресцентное «свечение» и «увидит» счетчик - вместо полной «темноты». А оргстекло нужно от выбиваемых той же космикой из свинца и меди электронов, энергия которых тоже достаточна для обнаружения счетчиком Гейгера.

При измерении фона следует учитывать, что свинцовый «домик» не оказывает никакого препятствия для космических мюонов. Их поток составляет ~0,015 . Например, через счетчик СБМ-20 эффективной площадью ~8 пройдет 0,12 или 7,2 . Из-за большой энергии эффективность регистрации космических мюонов практически любым счетчиком Гейгера можно принимать за 100%, и эту величину следует вычесть из темнового фона.

Если собственный фон - источник погрешностей при низких уровнях, то мертвое время сказывается при больших уровнях радиации. Сущность явления состоит в том, что сразу после импульса емкость счетчика еще не зарядилась до первоначального напряжения через нагрузочное сопротивление. Кроме того, в счетчике только погас разряд - но гасящая присадка еще не успела вернуться в первоначальное состояние. Поэтому у счетчика на 150-200 мкс возникает состояние, когда он оказывается нечувствителен к следующей частице, после чего он постепенно восстанавливает чувствительность. (рис. 3)


Рис. 3. Мертвое время счетчика Гейгера

Поправка на мертвое время находится по формуле:

где m и n, соответственно, измеренная и скорректированная скорости счета, а - мертвое время.

При очень больших уровнях радиации у многих счетчиков Гейгера (тут еще зависит и от остальной схемы) наступает неприятный и опасный эффект: постоянная ионизация мешает формироваться отдельным импульсам. Счетчик начинает непрерывно «гореть» постоянным разрядом и скорость счета резко падает до очень малой величины. Вместо того, чтобы зашкалить, дозиметр показывает какие-то умеренно-повышенные, а то и почти нормальные цифры. А тем временем вокруг светят десятки и сотни рентген в час и надо бы бежать, но вы успокоены показаниями дозиметра. Именно поэтому в армейских дозиметрах почти всегда есть помимо основного чувствительного - счетчик «судного дня», очень малочувствительный, но зато способный переварить тысячи Р/ч.

От скорости счета к дозе. Ход с жесткостью и прочие нехорошие вещи

Вообще говоря, счетчик Гейгера не измеряет мощность дозы. Мы получаем лишь скорость счета - сколько импульсов в минуту или секунду выдал счетчик. К дозе - энергии, поглощенной в одном килограмме человеческого тела (или еще чего-либо) это имеет весьма отдаленное отношение. В первую очередь - в связи с принципом действия: счетчику Гейгера абсолютно плевать на природу частицы и ее энергию. Импульсы от фотонов любой энергии, бета-частиц, мюонов, позитронов, протонов - будут одинаковыми. А вот эффективность регистрации - разная.

Как уже я говорил, бета-излучение счетчик Гейгера регистрирует с эффективностью в десятки процентов. А гамма-гамма-кванты - только доли процента. И все это напоминает складывание метров с килограммами, да еще и с произвольно взятыми коэффициентами. Вдобавок, чувствительность счетчика к гамма-излучению неодинакова при разных энергиях (рис.4). Дозовая чувствительность к излучению разных энергий может отличаться почти на порядок. Природа этого явления понятна: гамма-излучение низкой энергии имеет гораздо больший шанс поглотиться тонким слоем вещества, поэтому чем энергия ниже, тем выше эффективность (пока не начнет сказываться поглощение в стенках счетчика). В области же высоких энергий наоборот: с ростом энергии эффективность регистрации растет, что является среди детекторов ионизирующего излучения достаточно необычным явлением.


Рис. 4. Энергетическая зависимость дозовой чувствительности счетчика Гейгера-Мюллера (слева) и результат ее компенсации с помощью фильтра.

К счастью, при высоких энергиях (выше 0,5-1 МэВ) эффективность счетчика Гейгера к гамма-излучению почти пропорциональна энергии. А значит, энергетическая зависимость дозовой чувствительности там невелика. А горб при малых энергиях легко убрать с помощью фильтра из свинца толщиной около 0,5 мм. Толщина фильтра подбирается таким образом, чтобы при энергии, соответствующей максимальной чувствительности детектора (это 50-100 кэВ в зависимости от толщины входного окна детектора) кратность поглощения составляла бы величину этого пика. Чем энергия больше, тем меньше поглощения в свинце, и при 500-1000 кэВ, где чувствительность детектора выравнивается сама, оно уже практически незаметно.

Более точной коррекции можно добиться, используя многослойный фильтр из разных металлов, который нужно подбирать к конкретному счетчику.

Такой фильтр сокращает «ход с жесткостью» до величины в 15-20% во всем диапазоне 50-3000 кэВ и превращает показометр (ну ладно, поисковый радиометр-индикатор) в дозиметр.

Такой фильтр обычно делают съемным, поскольку он делает датчик нечувствительным к альфа- и бета-излучению.

***

В общем-то, это все, что нужно знать про счетчик Гейгера-Мюллера конструктору приборов на его основе. Как видите, прибор и впрямь несложный, хотя ряд тонкостей имеется. В следующей серии мы на его основе что-нибудь полезное сконструируем.

Несмотря на то, желаем мы того или нет, но термин «радиация» надолго вклинился в наше сознание и бытие, и никому не скрыться от факта ее присутствия. Людям приходится учиться жить с этим в какой-то мере негативным феноменом. Явление радиации может проявлять себя при помощи невидимых и неощутимых излучений, и без специальной аппаратуры выявить его практически нереально.

Из истории изучения радиации

В 1895 году произошло открытие рентгеновских лучей. Уже через год был открыт феномен радиоактивности урана, также связанный с открытием и применением рентгеновских лучей. Исследователям пришлось столкнуться с абсолютно новым, невиданным до той поры природным явлением.

Следует отметить, что с феноменом радиации уже сталкивались за несколько лет до этого, однако явлению не было уделено должного внимания. И это при том, что обжигались рентгеновскими лучами даже знаменитый Никола Тесла, а также рабочий персонал в лаборатории Эдисона. Ухудшение здоровья объясняли всем, чем только могли, но не излучением.

Позднее с началом XX столетия произошло появление статьей о вредоносном воздействии радиации на подопытных животных. Это также прошло без внимания до одного нашумевшего происшествия, в котором пострадали «радиевые девушки» – работницы фабрики, выпускавшей светящиеся часы.

Руководство фабрики рассказало девушкам о безвредности радия, и они принимали смертельные дозы радиации: облизывали кончики кисточек с радиевой краской, ради развлечения красили ногти и даже зубы светящейся субстанцией. Пяти девушкам, которые пострадали от такой работы, удалось подать на фабрику судебный иск. В результате чего был создан прецедент по отношению к правам некоторых рабочих, которые получали профессиональные заболевания и подавали в суд на своих работодателей.

История появления счетчика Гейгера — Мюллера

Немецкий физик Ганс Гейгер, работавший в одной из лабораторий Резерфорда, в 1908 году разработал и предложил принципиальную схему действия счетчика «заряженных частиц». Он представлял собой модификацию уже знакомой тогда ионизационной камеры, которая была представлена в виде электрического конденсатора, наполненного газом с небольшим давлением. Камеру применял еще Пьер Кюри, когда изучал электрические свойства газов. Гейгер придумал ее употребить для выявления ионизирующего излучения именно оттого, что это излучение оказывало непосредственное воздействие на уровень ионизации газов.

В конце 20-х годов Вальтер Мюллер под руководством Гейгера создал некоторые типы счетчиков радиации, при помощи которых можно было регистрировать самые разнообразные ионизирующие частицы. Работа над созданием счетчиков была весьма необходимой, потому что без них нельзя было исследовать радиоактивные материалы. Гейгеру с Мюллером пришлось целеустремленно поработать над сотворением таких счетчиков, которые были бы чувствительны к любой из выявленных на то время разновидностей излучений типа α, β и γ.

Счетчики Гейгера-Мюллера оказались простыми, надежными, дешевыми, а также практичными датчиками радиации. Это при том, что они не являлись самыми точными инструментами для изучения излучения или некоторых частиц. Зато очень хорошо подходили в качестве приборов для общих измерений насыщенности ионизирующего излучения. В сочетании с другими приборами они и сейчас употребляются физиками-практиками для более точных замеров в процессе экспериментирования.

Что такое ионизирующее излучение?

Для лучшего понимания работы счетчиков Гейгера-Мюллера не мешало бы ознакомиться с ионизирующим излучением как таковым. К нему может относиться все то, что вызывает ионизацию веществ, находящихся в естественном состоянии. Для этого потребуется присутствие какой-то энергии. В частности, ультрафиолетовый свет либо радиоволны не причисляются к ионизирующему излучению. Разграничение может начинаться так называемым «жестким ультрафиолетом», еще именуемым «мягким рентгеном». Такая разновидность потока называется фотонное излучение. Поток фотонов высокой энергии — это гамма-кванты.

В первый раз разделение ионизирующего излучения по трем видам было проделано Эрнстом Резерфордом. Все производилось на исследовательском оборудовании, в котором было задействовано магнитное поле в пустом пространстве. В дальнейшем все это было названо:

  • α – ядрами атомов гелия;
  • β – электронами высокой энергии;
  • γ – гамма-квантами (фотонами).

Позднее произошло открытие нейтронов. Так, выяснилось, что альфа-частицы могут с легкостью задерживаться даже с помощью обыкновенной бумаги, бета-частицы обладают несколько большей проникающей способностью, а гамма-лучи – самой высокой. Самыми опасными считаются нейтроны, особенно на дистанции во много десятков метров в воздушном пространстве. Вследствие их электрической индифферентности, они не вступают во взаимодействие ни с какой электронной оболочкой молекул в веществе.

Однако при попадании в атомные ядра с высоким потенциалом приводят к их неустойчивости и распаду, после чего образуются радиоактивные изотопы. А те, далее в процессе распада, сами образуют всю полноту ионизирующего излучения.

Устройства счетчика Гейгера-Мюллера и принципы работы

Газоразрядные счетчики Гейгера-Мюллера, главным образом, выполняются как герметичные трубки, стеклянные или металлические, из которых выкачан весь воздух. Его заменяют добавленным инертным газом (неоном или аргоном или их смесью) при невысоком давлении, с галогеновым или спиртовыми примесями. По осям трубок натянуты тонкие проволоки, а соосно с ними расположены металлические цилиндры. И трубки и проволоки — это электроды: трубки – катоды, а проволоки – аноды.

К катодам подключаются минусы от источников постоянного напряжения, а к анодам – с использованием большого постоянного сопротивления – плюсы от источников с постоянным напряжением. С электрической точки зрения выходит делитель напряжения. а в середине него уровень напряжения почти такой же, как напряжение на источнике. Как правило, он может доходить до нескольких сот вольт.

В процессе пролета ионизирующих частиц через трубки, атомы в инертном газе, которые уже находятся в электрополе высокой интенсивности, сталкиваются с этими частицами. Та энергия, которая была отдана частицами в процессе столкновения немалая, ее хватит для того, чтобы оторвались электроны от атомов газа. Образовавшиеся электроны вторичного порядка сами в состоянии формировать дальнейшие столкновения, после чего выходит целый электронный и ионный каскад.

При воздействии электрополя происходит ускорение электронов по направлению к анодам, а положительно заряженных ионов газа – к катодам трубок. Вследствие этого зарождается электроток. Поскольку энергию частиц уже израсходовали для столкновений, целиком или отчасти (частицы пролетели через трубку), ионизированные атомы газа стали заканчиваться.

Как только заряженные частицы попали в счетчик Гейгера-Мюллера, путем зарождающегося тока произошло падение сопротивления трубки, одновременно с этим изменяется напряжение в центральной отметке разделителя, о чем было указано ранее. После этого сопротивление в трубке в результате его роста возобновляется, а уровень напряжения снова приходит в прежнее состояние. В результате, получаются отрицательные импульсы напряжения. Произведя отсчет импульсов, можно установить количество частиц, которые пролетели. Самая большая интенсивность электрополя наблюдается рядом с анодом, благодаря его малым размерам, вследствие этого счетчики становятся более чувствительными.

Конструкции счетчиков Гейгера-Мюллера

У всех современных счетчиков Гейгера-Мюллера имеются две основные разновидности: «классическая» и плоская. Классические счетчики выполняются из тонкостенных гофрированных металлических трубок. Гофрированные поверхности счетчиков делают трубки жесткими, они устоят перед внешним атмосферным давлением, и не дадут им мяться под любыми воздействиями. С торцов трубок имеются стеклянные или пластмассовые гермоизоляторы. Там же находятся отводы-колпачки, чтобы подключаться к схеме. Трубки маркированы и покрыты с помощью прочного изолирующего лака с указанием полярности отводов. Вообще это универсальные счетчики для любой разновидности ионизирующего излучения, особенно для бета-гамма-излучений.

Счетчики, которые могут быть чувствительными к мягким β-излучениям, производятся по-иному. Вследствие малых пробегов β-частиц, их делают плоскими. Слюдяные окошки слабо задерживают бета-излучения. Одним таким счетчиком можно назвать датчик БЕТА-2. Во всех остальных счетчиках определение их свойств относят к материалам их изготовления.

Все счетчики, которые регистрируют гамма-излучение, обладают катодами, изготовленными из таких металлов, в которых присутствует большое зарядовое число. Газы чрезвычайно неудовлетворительно ионизируются с помощью гамма-фотонов. Тем не менее, гамма-фотоны могут выбивать множество электронов вторичного происхождения из катодов, если выбирать их надлежащим образом. Большинство счетчиков Гейгера-Мюллера для бета-частиц изготавливаются так, чтобы у них были тонкие окна. Это делается, чтобы улучшить проницаемость частиц, потому что это всего лишь обычные электроны, получившие больше энергии. С веществами у них происходит взаимодействие очень хорошее и быстрое, вследствие этого энергия теряется.

С альфа-частицами дела обстоят куда сквернее. Например, невзирая на довольно-таки порядочную энергию, несколько МэВ, у альфа-частиц происходит весьма сильное взаимодействие с молекулами, движущимися в пути и скоро теряющими энергетический потенциал. Обычные счетчики неплохо реагируют на α-излучения, но исключительно на удалении в несколько сантиметров.

Чтобы произвести объективную оценку уровня ионизирующего излучения дозиметры на счетчиках с общим применением нередко снабжаются двумя последовательно функционирующими счетчиками. Один может быть более чувствительным к α-β-излучениям, а другой к γ-излучению. Порой среди счетчиков помещаются бруски или пластины из сплавов, в которых имеются примеси кадмия. При попадании нейтронов в такие бруски возникает γ-излучение, которое и регистрируется. Это делается для возможного определения нейтронного излучения, а к нему у простых счетчиков Гейгера практически отсутствует чувствительность.

Как на практике применяются счетчики Гейгера

Советской, а сейчас уже и российской промышленностью выпускается множество разновидностей счетчиков Гейгера-Мюллера. Такими приборами главным образом пользуются люди, которые имеют какое-то отношение к объектам ядерной индустрии, к научным или учебным учреждениям, к гражданской обороне, к медицинской диагностике.

После того, как произошла чернобыльская катастрофа, бытовые дозиметры, раньше абсолютно незнакомые населению нашей страны даже по наименованию, начали приобретать поистине всенародную популярность. Начало появляться множество моделей бытового назначения. Во всех них используются собственно счетчики Гейгера-Мюллера в качестве датчиков радиации. Обычно в бытовых дозиметрах устанавливаются одна-две трубки или торцевые счетчики.

С помощью современного счетчика Гейгера можно измерить уровень радиации строительных материалов, земельного участка или квартиры, а также продуктов питания. Он демонстрирует практически стопроцентную вероятность заряженной частицы, ведь для ее фиксирования достаточно всего одной пары электрон-ион.

Технология, на основе которой создан современный дозиметр на базе счетчика Гейгера-Мюллера, позволяет получать результаты высокой точности за очень короткий промежуток времени. На измерение требуется не больше 60 секунд, а вся информация выводится в графическом и числовом виде на экране дозиметра.

Настройка прибора

У прибора есть возможность настройки порогового значения, когда он превышен, издается звуковой сигнал, предупреждающий вас об опасности. Выберите одно из заданных значений порога в соответствующем разделе настроек. Звуковой сигнал также можно отключить. Перед проведением измерений рекомендуют провести индивидуальную настройку прибора, выбрать яркость дисплея, параметры звукового сигнала и элементов питания.

Порядок выполнения измерений

Выберите режим «Измерение», при этом прибор начинает оценку радиоактивной обстановки. Примерно через 60 секунд на его дисплее появляется результат измерений, после чего начинается следующий цикл анализа. Для того чтобы получить точный результат, рекомендуют провести не менее 5 циклов измерений. Увеличение числа наблюдений дает более достоверные показания.

Чтобы измерить радиационный фон предметов, например стройматериалов или пищевых продуктов, нужно включить режим «Измерение» на расстоянии нескольких метров от объекта, затем поднести прибор к предмету и измерить фон максимально близко к нему. Сравните показания прибора с данными, полученными на расстоянии нескольких метров от предмета. Разница между этими показаниями - это дополнительный радиационный фон исследуемого объекта.

Если результаты измерений превышают естественный фон, характерный для той местности, в которой вы находитесь, это свидетельствует о радиационном загрязнении исследуемого объекта. Для оценки загрязнения жидкости рекомендуют проводить измерения над ее открытой поверхностью. Чтобы защитить прибор от влаги, его нужно обернуть полиэтиленовой пленкой, но не более чем в один слой. Если дозиметр длительное время находился при температуре ниже 0оС, перед проведением измерений его необходимо выдержать при комнатной температуре в течение 2 часов.

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.