Формула хлорида алюминия в химии. Безводный хлористый алюминии

В данной статье речь пойдет о хлориде алюминия - веществе, широко используемом человеком во множестве областей своей деятельности. Мы рассмотрим основные качественные характеристики данного соединения, способы его получения и другие особенности.

Ознакомление с хлоридом алюминия

Хлорид алюминия - это алюминиевые соли, а также соли масляной кислоты. Его химическая формула - AlCl 3 . Процесс возгонки начинается при 183 °C в условиях обычного давления. При увеличении давления процесс плавления начинается со 192.6 °C.

В воде данное соединение растворяется довольно хорошо - при 25 °C в ста граммах воды растворяется до 44.38 грамма хлорида алюминия. В воздухе с повышенной влажностью он начинает дымить из-за реакции гидролиза, выделяя при этом HCl.

В водных растворах образуются кристаллогидраты белого цвета, с желтым оттенком. Хлорид алюминия хорошо растворяется в огромном количестве соединений органического типа, например этаноле, нитробензоле, этиленгликоле и т. д. Процесс растворения в растворах толуола и бензола практически не наблюдается.

Способы получения

Способов получения AlCl 3 существует немало. И важнейшим из них является процесс воздействия Cl 2 и CO в шахтной печи на обезвоженные бокситы или каолины:

  • Al 2 O 3 + ЗСО + 3Cl 2 → 2AlCl 3 + 3CO 2 .

Еще один немаловажный способ получения - это взаимодействие трихлорида бора и фосфида алюминия при температуре, равной девятистам градусам по Цельсию. На выходе этой реакции получаются хлорид алюминия и фосфид бора:

  • BCl 3 +AlP BP+AlCl 3.

К другим способам получения относятся:

  • Al + FeCl 3 → AlCl 3 + Fe;
  • Al(OH) 3 + 3HCl → AlCl 3 + 3H 2 O;
  • 3CuCl 2 + 2Al → 2AlCl 3 + 3Cu↓;
  • 2Al + 6HCl → 2AlCl 3 + 3H 2 .

Области применения

Безводный AlCl 3 используется в промышленности, чаще всего как катализатор. Он способен образовывать различные продукты в результате соединения с большим количеством неорганических и органических веществ. Собственно, на этом и базируется его основной способ применения в качестве катализатора. Например, при разложении нефти на различные фракции AlCl 3 используется в качестве деструктивного катализатора.

В основе процесса алкилирования при его использовании лежит тот факт, что углеводороды ряда этилена начинают полимеризироваться и конденсироваться, образуя более сложные ряды систем. Реакция ацилирования и процесс изомеризации углеводородов парафина также могут протекать под воздействием хлорида алюминия как катализатора в химическом взаимодействии веществ.

Косметика и хлорид алюминия гексагидрат

Гексагидрат - это производное вещество хлорида алюминия с химической формулой - AlCl 3 -6H 2 O . Оно широко используется в косметической промышленности, однако является довольно опасным соединением. Кстати, это один из многих чаще всего используемых компонентов при изготовлении дезодорантов-антиперспирантов. Это связано с тем, что данное вещество довольно дешевое в стоимости, и к тому же оно действительно отлично справляется с ролью борца с потливостью человека.

Хлорид алюминия гексагидрат довольно часто терпит нападки множества регуляторов, так как считается довольно токсичным компонентом. И это в действительности так, но так как он является весьма действенным, в большинстве случаев на его недостаток закрывают глаза. Немалое количество исследований и опытов подтверждают эффективность соединения в борьбе с потоотделением.

Максимальная концентрация данного вещества при изготовлении продукции все еще изучается, так как точная причина ярко выраженной способности к снижению выделения пота пока точно неясна. Если попытаться описать его свойство с точки зрения физического эффекта, то AlCl 3 -6H 2 O образует соединения металла нерастворимого типа, которые блокируют потовые протоки и тем самым помогают предотвратить потоотделение на какое-то время.

Алюминия хлорид гексагидрат является одним из компонентов большого спектра товаров для потребителя. Чаще всего он встречается в дезодорантах, а также зубных пастах, помаде и в качестве коллоидного красителя.

В зубной пасте и помадах количество AlCl 3 -6H 2 O обычно находится на минимальном уровне, в пределе от сотой процента до десяти, а в красителях доходит до 18 %.

Что такое гексагидрат etiaxil

Хлорид алюминия гексагидрат etiaxil - это одно из важнейших средств в борьбе с гипергидрозом (повышенным потоотделением) подмышек. Данная проблема может возникать у множества людей, особенно задевая чувство комфорта у наиболее чистоплотных. А связано это может быть со множеством причин:

  • сбои в работе гормональной системы;
  • ее перестройка;
  • жара на улице;
  • заболевания различного типа;
  • нарушения функционирования нервной системы и т. д.

Названное соединение отлично борется с проблемами чрезмерного выделения пота и является очень действенным веществом. Его рекомендуется наносить на сухую и нераздраженную кожу, а перед ночным сном следует смывать, используя мыло. При возникновении раздражения в месте использования необходимо применять кортикоидные мази. Достаточно дважды применить хлорид алюминия гексагидрат, и это даст очень хорошие результаты, дальше его будет достаточно применять около одного раза в неделю.

Гексагидрат хлорида алюминия представляется в виде кристаллов, не имеющих цвета, легко растворимых в растворах спирта, воды, эфиров и глицерина. Соединение является очень гигроскопичным, по этой причине должно сохраняться в сухих местах, без доступа влаги.

Заключение

Надеемся, что наша статья помогла вам разобраться в том, что такое хлорид алюминия. Теперь вы сможете дать исчерпывающую характеристику, перечислить способы получения в промышленности и сферы использования данного вещества. Используя AlCl 3 и AlCl 3 -6H 2 O, важно помнить, что эти соединения относится к ряду токсичных веществ и по этой причине нужно быть аккуратными в их применении.

Физико-химические свойства

Хлористый алюминий А1С13 - белый кристаллический порошок 9 плотностью 2,47 г/см3 возгоняется при 182,7°, под давлением 2,5 ат плавится при 192,4°.

Давление паров А1С13 равно 760,0 мм рт. ст. при 180,2° и 2277,5 мм рт. ст. при 213°.

ТАБЛИЦА 117

В табл. 117 приведены значения давления паров А1С1з и FeCl3 при разных температурах, а в табл. 118 - состав и давление паров в системе FeCl3-AICI3.

ТАБЛИЦА 118

Растворимость А1С13 в 100 г при 20° равна 46 г, в горячей воде разлагается. Хорошо растворяется во многих органических растворителях. Из водного раствора кристаллизуется А1С13-6НгО с плотностью 2,4 г/см3, расплывающийся на воздухе. При нагрева­нии отщепляет воду и НО с образованием А1203.

В воде хлористый алюминий гидролизуется с образованием ос­новных хлоридов алюминия. Предполагают 164, что они отвечают общей формуле А1С13-гаА1 (ОН)3. Вероятно, что при взаимодействии А1С13 с водой образуются также комплексные кислоты Н3[А1С13(ОН)3] и Н3[А1С12(ОН)4].

С газообразным аммиаком хлористый алюминий образует ам­миакаты: A1C13-6NH3, частично разлагающийся при 180°, и А1С13- NH3, стойкий до 400°. Хлористый алюминий образует соединения и со многими другими неорганическими и органическими вещества­ми. С галогенидами одновалентных металлов хлористый алюминий образует комплексные соединения типа М[А1СЦ]. Этим обусловли­вается его каталитическая активность. В присутствии А1С13 повы­шается давление пара других хлоридов. Из расплава NaCl-А1С13, содержащего около 50 мол.% А1С1з, выше 550° отгоняются значи­тельные количества NaCl, возможно вследствие образования лету­чего соединения NaAlCU 165. При прокаливании хлористого алюми­ния в токе воздуха уже при 400° образуются окись алюминия и хлор 166.

Помимо треххлористого алюминия известен монохлорид алюми­ния А1С1, образующийся при взаимодействии металлического алю­миния с газообразным хлористым водородом выше 1100° при давле­нии 10 мм рт. ст. При 1020° получается продукт состава А1С12 ,23167. Монохлорид алюминия образуется также при действии пара А1С13 на алюминий при высоких температурах I6S. Исследуется получе­ние металлического алюминия высокой чистоты169 разложением А1С1 при 700-800°.

Применение

Хлористый алюминий применяют, главным образом, в качестве катализатора при крекинге нефтепродуктов, а также для ряда ор­ганических синтезов 1?0.

Он обладает также полимеризующими свойствами. Это имеет большое значение для производства смазочных масел и моторного топлива, синтетического каучука и других полимеров. Гидролизом А1С13 в паровой фазе получают тонкодисперсную окись алюми­ния ш.

Технический безводный хлористый алюминий выпускают двух сортов. Согласно ГОСТ 4452-66, продукт должен иметь белый или слабо-желтый цвет и содержать в 1 и 2 сорте соответственно: не ме­нее 99,0 и 98,5% А1С13 и не более 0,05 и 0,15% железа (в пересчете на FeCl3) и 0,5 и 0,8% титана (в пересчете на TiCl4). Частицы хло­ристого алюминия обоих сортов должны быть не больше 5 мм.

Получение безводного хлористого алюминия

Вследствие гидролиза водных растворов А1С13 и разложения его при высоких температурах получение безводного А1С13 из раство­ров или шестиводного хлорида алюминия весьма затруднено.

Поэтому основным методом получения безводного А1С1з является хлорирование материалов, содержащих алюминий 172.

Металлический алюминий - дорогой вид сырья, и он приме­няется для производства хлористого алюминия действием хлора173 или сухого хлористого водорода лишь в ограниченных количествах, главным образом в лабораторных условиях. Изучено 174 хлорирова­ние алюминиевого порошка газообразным хлором в расплаве, со­держащем FeCl3. Обычным же сырьем служат окись алюминия, соединения, содержащие глинозем, бокситы и алюмосиликаты, на­пример лейциты, каолин и глина. Чаще всего используют глинозем и каолин и их смеси 155.

Получение безводного хлористого алюминия из материалов, со­держащих глинозем, основано на реакции хлорирования окиси алюминия в присутствии углерода как восстановителя:

А1203 + ЗС + ЗС12 = 2А1С13 + зсо 2А1203 + ЗС + 6С12 = 4А1С13 + ЗС02

Тепла, выделяющегося по второй реакции, достаточно для обес­печения автотермичности процесса 175.

Окись алюминия в виде брикетов с коксом, приготовленных на смоле, практически полностью хлорируется при 650-800° в течение 40-60 мин при полном использовании хлора. В полученном про­дукте содержится до 98-99% А1С13 (остальное - непрореагиро - вавший А120з). В присутствии небольших количеств Si02 хлориро­вание смеси А1203 + С ускоряется 176.

Процесс можно осуществить взаимодействием хлора и окиси уг­лерода с порошкообразной окисью алюминия в присутствии хлори дов щелочного металла и алюминия 177. Отношение хлоридов к А1203 поддерживают равным 1:1. Хлорирование смеси окиси алю­миния с углем в аппарате со взвешенным слоем 178 позволяет ж ключить операцию брикетирования и осуществить процесс непре­рывным путем. Для хлорирования можно использовать, помимо хлора, фосген 179- 180. Для уменьшения уноса с газами тонкодис­персной окиси алюминия рекомендуют 181> 182 применять глинозем в виде гранул с размерами частиц 0,5-1 мм.

При хлорировании брикетов из боксита, каолина или глины, помимо А1С13, образуются также другие хлориды вследствие вза­имодействия с хлором примесей Fe203, Si02, Ti02 и др. Описано производство хлористого алюминия из боксита с низким содержа­нием Si и Fe 182. Боксит вначале прокаливают при 950-1000° во вращающейся печи для удаления влаги. К прокаленному, измель­ченному бокситу добавляют равное количество кокса, расплавлен­ный асфальт или другое связующее и приготавливают брикеты, которые подогревают в шахтной печи горячим газом до 800° для удаления углеводородов и влаги, а затем хлорируют в течение 8-10 ч при 850°. Для получения продукта, содержащего 94-95 %.

А1С1з, следует применять боксит с высоким содержанием AI2O3 (55-60%) и низким содержанием SiC>2 (менее 5%) и Fe203" (ме­нее 3%).

Газообразный продукт хлорирования улавливается в стальных цилиндрических конденсаторах вертикального типа. Внутри имеют­ся мешалки, сбрасывающие в бункеры оседающий на стенках гото­вый продукт.

Большим недостатком этого способа является сложность очист­ки полученного продукта от примесей других хлоридов. Предло­женный способ осуществления процесса под разрежением 700- 750 мм рт. ст. при высокой температуре (1000-1510°) с целью разложения образующихся примесей хлоридов 183 требует проверки и представляется сложным в технологическом отношении.

При хлорировании каолина помимо А1203 хлорируется также и Si02. Степень использования хлора на хлорирование А1203 из као­лина при 550-800° в среднем составляет 45-50% !84. Остальное количество хлора расходуется на хлорирование примесей. Ниже 900° скорость хлорирования А1203 в каолине больше скорости хло­рирования Si02185. В присутствии фосгена выход А1С13 возрастает с повышением температуры до 1000°186"187. По мере протекания процесса во времени скорость хлорирования А1203 при температу­рах ниже 1000° уменьшается быстрее, чем скорость хлорирования Si02, вследствие чего непрерывно возрастает отношение прореаги­ровавших Si02 и А1203 184"188. При 1000° и выше скорость хлориро­вания Si02 и А120з по времени снижается в одинаковой сте­пени и отношение прохлорированных Si02 и А1203 остается по­стоянным.

Влияние температуры на скорость хлорирования каолина и глин и на степень использования хлора для образования А1С13 связано с фазовыми превращениями, происходящими при нагревании као­лина и образованием модификаций А1203 и Si02, обладающих раз­личной реакционной способностью 188. При нагревании каолинита он вначале переходит в метакаолинит или каолинитовый ангидрид 2Si02-Al203, который при 970° превращается в силлиманит Si02 А1203189-195 (стр. 639). Силлиманит представляет собой соеди­нение с более упорядоченной кристаллической структурой по срав­нению с каолинитовым ангидридом. Этим объясняется понижение скорости хлорирования каолина в пределах 950-1000° 185> 187> 196. При более высоких температурах скорость хлорирования вновь возрастает и при 1200° можно получить хороший выход А1С13197.

При предварительной обработке прокаленного каолина соляной кислотой условия хлорирования улучшаются. Степень использова­ния хлора на образование А1С13 возрастает до 70-80%. Соответ­ственно снижается доля от общего количества хлора, расходуемая на образование четыреххлористого кремния175. Наиболее рацио­нальным является хлорирование шихты из каолина и глинозема155.

При подборе рационального состава шихты удается достичь мак­симального использования хлора и А1203 из каолина.

Технический хлористый алюминий содержит примеси SiCl4, TiCU, а также FeCl3. Четыреххлористые кремний и титан легко удаляются, так как они кипят при температурах, намного ниже температуры возгонки хлористого алюминия. Основные затрудне­ния по очистке хлористого алюминия связаны с удалением хлор­ного железа. Большинство предложенных методов основано на вос­становлении хлорного железа до металлического железа путем на­гревания с другим металлом, имеющим большее сродство к хлору, чем железо. Чаще всего для этой цели применяют возгонку сырого продукта над алюминиевыми стружками в алюминиевом со­суде 170"198.

Технический хлористый алюминий окрашен в желтый цвет вследствие содержания в нем хлорного железа в количестве до 2- 3%, Наряду с хлорным железом он содержит окислы и оксихло - риды железа и алюминия, образующиеся при частичном гидролизе этих солей на воздухе. у

Химически чистый безводный хлористый алюминий можно по­лучить;

Действием хлора или хлористого водорода на металлический алюминий при 400-500° 199-201.

Восстановлением хлорного железа, содержащегося в техни­ческом хлористом алюминии в железо при нагревании с алюминие­выми стружками или в хлористое железо при нагревании с желез­ными стружками в запаянных трубках при 200-250° 202. Получен­ный продукт подвергают возгонке.

Нагреванием хлористого алюминия с алюминиевым порош­ком в расплаве с 4-5% NaCl при нормальном давлении 203"204 с последующей сублимацией очищенного хлористого алюминия. Од­нако при атмосферном давлении разделение хлоридов железа и алюминия затруднительно. Процесс значительно упрощается, если технический хлористый алюминий сублимировать через нагретые до 170° алюминиевые стружки в вакууме.

Бесцветные кристаллы, плотностью 2,44 г/см³. При обычном давлении возгоняется при 183 °C (под давлением плавится при 192,6 °C). В воде хорошо растворим (44,38 г в 100 г H 2 O при 25 °C); вследствие гидролиза дымит во влажном воздухе, выделяя HCl . Из водных растворов выпадает кристаллогидрат AlCl 3 · 6H 2 O - желтовато-белые расплывающиеся кристаллы. Хорошо растворим во многих органических соединениях (в этаноле - 100 г в 100 г спирта при 25 °C, в ацетоне , дихлорэтане , диэтиленгликоле , нитробензоле , тетрахлоруглероде и др.); однако практически не растворяется в бензоле и толуоле .

Получение

Важнейший способ получения хлорида алюминия в промышленности - действие смеси Cl 2 и на обезвоженный каолин или боксит в шахтных печах:

  • Al 2 O 3 + ЗСО + ЗСl 2 → 2AlCl 3 + 3CO 2

Также есть и другие способы получения хлорида алюминия(примеры химических реакций):

  • Al + FeCl 3 → AlCl 3 + Fe
  • Al(OH) 3 + 3HCl → AlCl 3 + 3H 2 O

Применение

Безводный хлорид алюминия образует продукты присоединения со многими неорганическими (например, NH 3 , H 2 S , SO 2) и органическими (хлорангидриды кислот, эфиры и др.) веществами, с чем связано важнейшее техническое применение AlCl 3 как катализатора при переработке нефти и при органических синтезах (например, реакция Фриделя - Крафтса). Гексагидрат и его растворы используются при очистке сточных вод, обработке древесины и пр.

Арсенид алюминия (AlAs) Диборид алюминия (AlB 2) Додекаборид алюминия (AlB 12) Бромид алюминия (AlBr 3) Монохлорид алюминия (AlCl) Хлорид алюминия (AlCl 3) Монофторид алюминия (AlF) Фторид алюминия (AlF 3) Гидрид алюминия (AlH 3) Иодид алюминия (AlI 3) Нитрид алюминия (AlN) Нитрат алюминия (Al(NO 3) 3) Монооксид алюминия (AlO) Гидроксид алюминия (Al(OH) 3) Оксинитрид алюминия (AlON) Фосфид алюминия (AlP) Фосфат алюминия (AlPO 4) Антимонид алюминия (AlSb) Молибдат алюминия (Al 2 (MoO 4) 3) Оксид алюминия (Al 2 O 3) Сульфид алюминия (Al 2 S 3) Сульфат алюминия (Al 2 (SO 4) 3) Селенид алюминия (Al 2 Se 3) Силикат алюминия (Алюмосиликаты) (Al 2 SiO 5) Карбид алюминия (Al 4 C 3)


Wikimedia Foundation . 2010 .

Смотреть что такое "Хлористый алюминий" в других словарях:

    Или глиний (хим. обозначение Al, атомный вес 27, 04) металл, ненайденный до сих пор в природе в свободном состоянии; зато ввиде соединений, а именно силикатов, элемент этот повсеместно и широкораспространен; он входит в состав массы горных пород … Энциклопедия Брокгауза и Ефрона

    Или глиний (хим. обозначение Al; атомный вес 27,04) металл, не найденный до сих пор в природе в свободном состоянии; зато в виде соединений, а именно силикатов, элемент этот повсеместно и широко распространен: он входит в состав массы горных… …

    алюминий хлористый

    алюминий треххлористый - aliuminio chloridas statusas T sritis chemija formulė AlCl₃ atitikmenys: angl. aluminium chloride; aluminium trichloride rus. алюминий треххлористый; алюминий хлористый; алюминия хлорид ryšiai: sinonimas – aliuminio trichloridas … Chemijos terminų aiškinamasis žodynas

    См. алюминий и его соединения … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Хлористый алюминий, AlCl3, соль, бесцветные кристаллы, плотность 2440 кг/м3. При обычном давлении возгоняется при 183°С не плавясь (под давлением плавится при 192,6°С). В воде хорошо растворим (44,38 г в 100 г H2O при 25°С); вследствие… … Большая советская энциклопедия

    ХРОМ - см. ХРОМ (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы и др. В воде встречаются трехвалентные… … Болезни рыб: Справочник

    - (технич. их производство и применение). Различные глиноземные соли представляют наиболее важную протраву, употребляемую в красильном и ситцепечатном деле и их применение для этой цели основывается на способности глинозема образовать с пигментами… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Бекетов, Николай Николаевич, химик, ординарный академик; родился 1 января 1827 г., воспитывался в первой петербургской гимназии; в 1844 г. поступил в Петербургский университет, но с третьего курса перешел в Казань, где в 1849 г. получил степень… … Биографический словарь

    Ординарный академик, тайный советник; род. 1 января 1827 г. в Пензенской губ., в деревне своего отца, моряка Николая Алексеевича; воспитывался в 1 й Петербургской гимназии; в 1844 г. поступил в Петербургский университет, но с 3 го курса перешел в … Большая биографическая энциклопедия

Хлор — элемент 3-го периода и VII А-группы Периодической системы, порядковый номер 17. Электронная формула атома [ 10 Ne ]3s 2 Зр 5 , характерные степени окисления 0, -1, + 1, +5 и +7. Наиболее устойчиво состояние Cl -1 . Шкала степеней окисления хлора:

7 – Cl 2 O 7 , ClO 4 — ,HClO 4 , KClO 4

5 — ClO 3 — , HClO 3 ,KClO 3

1 – Cl 2 O , ClO — , HClO , NaClO , Ca(ClO) 2

— 1 – Cl — , HCl, KCl , PCl 5

Хлор обладает высокой электроотрицательностью (2,83), проявляет неметаллические свойства. Входит в состав многих веществ — оксидов, кислот, солей, бинарных соединений.

В природе — двенадцатый по химической распространенности элемент (пятый среди неметаллов). Встречается только в химически связанном виде. Третий по содержанию элемент в природных водах (после О и Н), особенно много хлора в морской воде (до 2 % по массе). Жизненно важный элемент для всех организмов.

Хлор С1 2 . Простое вещество. Желто-зеленый газ с резким удушливым запахом. Молекула Сl 2 неполярна, содержит σ-связь С1-С1. Термически устойчив, негорюч на воздухе; смесь с водородом взрывается на свету (водород сгорает в хлоре):

Cl 2 +H 2 ⇌HCl

Хорошо растворим в воде, подвергается в ней дисмутации на 50 % и полностью — в щелочном растворе:

Cl 2 0 +H 2 O ⇌HCl I O+HCl -I

Cl 2 +2NaOH (хол) = NaClO+NaCl+H 2 O

3Cl 2 +6NaOH (гор) =NaClO 3 +5NaCl+H 2 O

Раствор хлора в воде называют хлорной водой , на свету кислота НСlO разлагается на НСl и атомарный кислород О 0 , поэтому «хлорную воду» надо хранить в темной склянке. Наличием в «хлорной воде» кислоты НСlO и образованием атомарного кислорода объясняются ее сильные окислительные свойства: например, во влажном хлоре обесцвечиваются многие красители.

Хлор очень сильный окислитель по отношению к металлам и неметаллам:

Сl 2 + 2Nа = 2NаСl 2

ЗСl 2 + 2Fе→2FеСl 3 (200 °С)

Сl 2 +Se=SeCl 4

Сl 2 + РЬ→PbCl 2 (300 ° С )

5Cl 2 +2P→2PCl 5 (90 °С)

2Cl 2 +Si→SiCl 4 (340 °С)

Реакции с соединениями других галогенов:

а) Сl 2 + 2КВг (Р) = 2КСl + Вr 2 (кипячение)

б) Сl 2 (нед.) + 2КI (р) = 2КСl + I 2 ↓

ЗСl (изб.) + 3Н 2 O+ КI = 6НСl + КIO 3 (80 °С)

Качественная реакция — взаимодействие недостатка СL 2 с КI (см. выше) и обнаружение йода по синему окрашиванию после добавления раствора крахмала.

Получение хлора в промышленности :

2NаСl (расплав) → 2Nа + Сl 2 (электролиз)

2NaCl+ 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

и в лаборатории :

4НСl (конц.) + МnO 2 = Сl 2 + МnСl 2 + 2Н 2 O

(аналогично с участием других окислителей; подробнее см. реакции для НСl и NaСl).

Хлор относится к продуктам основного химического производства, используется для получения брома и йода, хлоридов и кислородсодержащих производных, для отбеливания бумаги, как дезинфицирующее средство для питьевой воды. Ядовит.

Хлороводород НС l . Бескислородная кислота. Бесцветный газ с резким запахом, тяжелее воздуха. Молекула содержит ковалентную σ -связь Н — Сl. Термически устойчив. Очень хорошо растворим в воде; разбавленные растворы называются хлороводородной кислотой , а дымящий концентрированный раствор (35-38 %)- соляной кислотой (название дано еще алхимиками). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Сильный восстановитель в концентрированном растворе (за счет Сl — I), слабый окислитель в разбавленном растворе (за счет Н I). Составная часть «царской водки».

Качественная реакция на ион Сl — — образование белых осадков АgСl и Нg 2 Сl 2 , которые не переводятся в раствор действием разбавленной азотной кислоты.

Хлороводород служит сырьем в производстве хлоридов, хлорорганических продуктов, используется (в виде раствора) при травлении металлов, разложении минералов и руд. Уравнения важнейших реакций:

НСl (разб.) + NаОН (разб.) = NaСl + Н 2 O

НСl (разб.) + NН 3 Н 2 O = NH 4 Сl + Н 2 O

4НСl (конц., гор.) + МO 2 = МСl 2 + Сl 2 + 2Н 2 O (М = Мп, РЬ)

16НСl (конц., гор.) + 2КМnO 4(т) = 2МnСl 2 + 5Сl 2 + 8Н 2 O + 2КСl

14НСl (конц.) + К 2 Сr 2 O 7(т) = 2СrСl 3 + ЗСl 2 + 7Н 2 O + 2КСl

6НСl (конц.) + КСlO 3(Т) = КСl + ЗСl 2 + 3Н 2 O (50-80 °С)

4НСl (конц.) + Са(СlO) 2(т) = СаСl 2 + 2Сl 2 + 2Н 2 O

2НСl (разб.) + М = МСl 2 + H 2 (М = Ре, 2п)

2НСl (разб.) + МСO 3 = МСl 2 + СO 2 + Н 2 O (М = Са, Ва)

НСl (разб.) + АgNO 3 = НNO 3 + АgСl↓

Получение НСl в промышленности — сжигание Н 2 в Сl 2 (см.), в лаборатории — вытеснение из хлоридов серной кислотой:

NаСl (т) + Н 2 SO4 (конц.) = NаНSO 4 + НС l (50 °С)

2NaСl (т) + Н 2 SO 4 (конц.) = Nа 2 SO 4 + 2НСl (120 °С)

Хлориды

Хлорид натрия Na Сl . Бескислородная соль. Бытовое название поваренная соль . Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, растворимость мало зависит от температуры, раствор имеет характерный соленый вкус. Гидролизу не подвергается. Слабый восстановитель. Вступает в реакции ионного обмена. Подвергается электролизу в расплаве и растворе.

Применяется для получения водорода, натрия и хлора, соды, едкого натра и хлороводорода, как компонент охлаждающих смесей, пищевой продукт и консервирующее средство.

В природе — основная часть залежей каменной соли, или галита , и сильвинита (вместе с КСl),рапы соляных озер, минеральных примесей морской воды (содержание NaСl=2,7%). В промышленности получают выпариванием природных рассолов.

Уравнения важнейших реакций:

2NаСl (т) + 2Н 2 SO 4 (конц.) + МnO 2(т) = Сl 2 + МnSO 4 + 2Н 2 O + Na 2 SO 4 (100 °С)

10NаСl (т) + 8Н 2 SO 4 (конц.) + 2КМnO 4(т) = 5Сl 2 + 2МnSO 4 + 8Н 2 О + 5Nа 2 SO 4 + К 2 SO 4 (100°С)

6NaСl (Т) + 7Н 2 SO 4 (конц.) + К 2 Сr 2 O 7(т) = 3Сl 2 + Сr 2 (SO 4) 3 + 7Н 2 O+ ЗNа 2 SO 4 + К 2 SO 4 (100 °С)

2NаСl (т) + 4Н 2 SO 4 (конц.) + РЬO 2(т) = Сl 2 + Рb(НSO 4) 2 + 2Н 2 O + 2NaНSO 4 (50 °С)

NaСl (разб.) + АgNO 3 = NaNО 3 + АgСl↓

NaCl (ж) →2Na+Cl 2 (850°С, электролиз)

2NаСl + 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

2NаСl (р,20%) → Сl 2 + 2 N а(Н g ) “амальгама” (электролиз,на Hg -катоде)

Хлорид калия КСl . Бескислородная соль. Белый, негигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, раствор имеет горький вкус, гидролиза нет. Вступает в реакции ионного обмена. Применяется как калийное удобрение, для получения К, КОН и Сl 2 . В природе основная составная часть (наравне с NаСl) залежей сильвинита .

Уравнения важнейших реакций одинаковы с таковыми для NаСl.

Хлорид кальция СаСl 2 . Бескислородная соль. Белый, плавится без разложения. Расплывается на воздухе за счет энергичного поглощения влаги. Образует кристаллогидрат СаСl 2 6Н 2 О с температурой обезвоживания 260 °С. Хорошо растворим в воде, гидролиза нет. Вступает в реакции ионного обмена. Применяется для осушения газов и жидкостей, приготовления охлаждающих смесей. Компонент природных вод, составная часть их «постоянной» жесткости.

Уравнения важнейших реакций:

СаСl 2(Т) + 2Н 2 SO 4 (конц.) = Са(НSO 4) 2 + 2НСl (50 °С)

СаСl 2(Т) + Н 2 SO 4 (конц.) = СаSO 4 ↓+ 2НСl (100 °С)

СаСl 2 + 2NaОН (конц.) = Са(ОН) 2 ↓+ 2NaCl

ЗСаСl 2 + 2Nа 3 РO 4 = Са 3 (РO 4) 2 ↓ + 6NaCl

СаСl 2 + К 2 СO 3 = СаСО 3 ↓ + 2КСl

СаСl 2 + 2NaF = СаF 2 ↓+ 2NаСl

СаСl 2(ж) → Са + Сl 2 (электролиз,800°С)

Получение:

СаСО 3 + 2НСl = СаСl 2 + СO 3 + Н 2 O

Хлорид алюминия АlСl 3 . Бескислородная соль. Белый, легкоплавкий,сильнолетучий. В паре состоит из ковалентных мономеров АlСl 3 (треугольное строение,sр 2 гибридизация, преобладают при 440-800 °С) и димеров Аl 2 Сl 6 (точнее, Сl 2 АlСl 2 АlСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 183-440 °С). Гигроскопичен, па воздухе «дымит». Образует кристаллогидрат, разлагающийся при нагревании. Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, создает в растворе сильнокислотную среду вследствие гидролиза. Реагирует со щелочами, гидратом аммиака. Восстанавливается при электролизе расплава. Вступает в реакции ионного обмена.

Качественная реакция на ион Аl 3+ — образование осадка АlРO 4 , который переводится в раствор концентрированной серной кислотой.

Применяется как сырье в производстве алюминия, катализатор в органическом синтезе и при крекинге нефти, переносчик хлора в органических реакциях. Уравнения важнейших реакций:

АlСl 3 . 6Н 2 O →АlСl(ОН) 2 (100-200°С, — HCl , H 2 O ) →Аl 2 O 3 (250-450°С, -HCl,H2O)

АlСl 3(т) + 2Н 2 O (влага) = АlСl(ОН) 2(т) + 2НСl (белый «дым»)

АlCl 3 + ЗNаОН (разб.) = Аl(OН) 3 (аморф.) ↓ + ЗNаСl

АlСl 3 + 4NаОН (конц.) = Nа[Аl(ОН) 4 ] + ЗNаСl

АlСl 3 + 3(NН 3 . Н 2 O) (конц.) = Аl(ОН) 3(аморф.) + ЗNН 4 Сl

АlCl 3 + 3(NН 3 Н 2 O) (конц.) =Аl(ОН)↓ + ЗNН 4 Сl + Н 2 O (100°С)

2Аl 3+ + 3Н 2 O + ЗСО 2- 3 = 2Аl(ОН) 3 ↓ + ЗСO 2 (80°С)

2Аl 3+ =6Н 2 O+ 3S 2- = 2Аl(ОН) 3 ↓+ 3Н 2 S

Аl 3+ + 2НРО 4 2- — АlРO 4 ↓ + Н 2 РO 4 —

2АlСl 3 →2Аl + 3Сl 2 (электролиз,800 °С ,в расплаве N аС l )

Получение АlСl в промышленност и — хлорирование каолина, глинозёма или боксита в присутствии кокса:

Аl 2 O 3 + 3С (кокс) + 3Сl 2 = 2АlСl 3 + 3СО (900 °С)

Хлорид железа( II ) F еС l 2 . Бескислородная соль. Белый (гидрат голубовато-зеленый), гигроскопичный. Плавится и кипит без разложения. При сильном нагревании летуч в потоке НСl. Связи Fе — Сl преимущественно ковалентные, пар состоит из мономеров FеСl 2 (линейное строение, sр-гибридизация) и димеров Fе 2 Сl 4 . Чувствителен к кислороду воздуха (темнеет). Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, слабо гидролизуется по катиону. При кипячении раствора разлагается. Реагирует с кислотами, щелочами, гидратом аммиака. Типичный восстановитель. Вступает в реакции ионного обмена и комплексообразования.

Применяется для синтеза FеСl и Fе 2 О 3 , как катализатор в органическом синтезе, компонент лекарственных средств против анемии.

Уравнения важнейших реакций:

FеСl 2 4Н 2 O = FеСl 2 + 4Н 2 O (220 °С, в атм. N 2 )

FеСl 2 (конц.) + Н 2 O=FеСl(ОН)↓ + НСl (кипячение)

FеСl 2(т) + Н 2 SO 4 (конц.) = FеSO 4 + 2НСl (кипячение)

FеСl 2(т) + 4HNO 3 (конц.) = Fе(NO 3) 3 + NO 2 + 2НСl + Н 2 O

FеСl 2 + 2NаОН (разб.) = Fе(ОН) 2 ↓+ 2NaСl (в атм. N 2 )

FеСl 2 + 2(NН 3 . Н 2 O) (конц.) = Fе(ОН) 2 ↓ + 2NН 4 Cl (80 °С)

FеСl 2 + Н 2 = 2НСl + Fе (особо чистое,выше 500 °С)

4FеСl 2 + O 2 (воздух) → 2Fе(Сl)O + 2FеСl 3 (t )

2FеСl 2(р) + Сl 2 (изб.) = 2FеСl 3(р)

5Fе 2+ + 8Н + + МnО — 4 = 5Fе 3+ + Мn 2+ + 4Н 2 O

6Fе 2+ + 14Н + + Сr 2 O 7 2- = 6Fе 3+ + 2Сr 3+ +7Н 2 O

Fе 2+ + S 2- (разб.) = FеS↓

2Fе 2+ + Н 2 O + 2СО 3 2- (разб.) = Fе 2 СO 3 (OН) 2 ↓+ СO 2

FеСl 2 →Fе↓ + Сl 2 (90°С, в разб. НСl, электролиз)

Получени е: взаимодействие Fе с соляной кислотой:

Fе + 2НСl = FеСl 2 + Н 2

промышленности используют хлороводород и ведут процесс при 500 °С).

Хлорид железа( III ) F еС l 3 . Бескислородная соль. Черно-коричневый (темно-красный в проходящем свете, зеленый в отраженном), гидрат темно-желтый. При плавлении переходит в красную жидкость. Весьма летуч, при сильном нагревании разлагается. Связи Fе — Сl преимущественно ковалентные. Пар состоит из мономеров FеСl 3 (треугольное строение, sр 2 -гибридизация, преобладают выше 750 °С) и димеров Fе 2 Сl 6 (точнее, Сl 2 FеСl 2 FеСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 316-750 °С). Кристаллогидрат FеСl . 6Н 2 O имеет строение Сl 2Н 2 O. Хорошо растворим в воде, раствор окрашен в желтый цвет; сильно гидролизован по катиону. Разлагается в горячей воде, реагирует со щелочами. Слабый окислитель и восстановитель.

Применяется как хлорагент, катализатор в органическом синтезе, протрава при крашении тканей, коагулянт при очистке питьевой воды, травитель медных пластин в гальванопластике, компонент кровоостанавливающих препаратов.

Уравнения важнейших реакций:

FеСl 3 6Н 2 O=Сl + 2Н 2 O (37 °С)

2(FеСl 8 6Н 2 O)=Fе 2 O 3 + 6НСl + 9Н 2 O (выше 250 °С)

FеСl 3 (10%) + 4Н 2 O = Сl — + + (желт.)

2FеСl3 (конц.) + 4Н 2 O = + (желт.) + — (бц.)

FеСl 3 (разб., конц.) + 2Н 2 O →FеСl(ОН) 2 ↓ + 2НСl (100 °С)

FеСl 3 + 3NaОН (разб.) = FеО(ОН)↓ + Н 2 O + 3NаСl (50 °С)

FеСl 3 + 3(NН 3 Н 2 O) (конц, гор.) =FeO(OH)↓+H 2 O+3NH 4 Cl

4FеСl 3 + 3O 2 (воздух) =2Fе 2 O 3 + 3Сl 2 (350-500 °С)

2FеСl 3(р) + Сu→ 2FеСl 2 + СuСl 2

Хлорид аммония N Н 4 Сl . Бескислородная соль, техническое название нашатырь. Белый, летучий, термически неустойчивый. Хорошо растворим в воде (с заметным эндо-эффектом, Q = -16 кДж), гидролизуется по катиону. Разлагается щелочами при кипячении раствора, переводит в раствор магний и гидроксид магния. Вступает в реакцию кон мутации с нитратами.

Качественная реакция на ион NН 4 + — выделение NН 3 при кипячении со щелочами или при нагревании с гашёной известью.

Применяется в неорганическом синтезе, в частности для создания слабокислотной среды, как компонент азотных удобрений, сухих гальванических элементов, при пайке медных и лужении стальных изделий.

Уравнения важнейших реакций:

NH 4 Cl (т) ⇌ NH 3(г) + HCl (г) (выше337,8 °С)

NН 4 Сl + NаОН (насыщ.) = NаСl + NН 3 + Н 2 O (100 °С)

2NН 4 Сl (Т) + Са(ОН) 2(т) = 2NН 3 + СаСl 2 + 2Н 2 O (200°С)

2NН 4 Сl (конц.) +Mg= Н 2 + МgСl 2 + 2NН 3 (80°С)

2NН 4 Сl (конц., гор.) + Мg(ОН) 2 = MgСl 2 + 2NН 3 + 2Н 2 O

NH + (насыщ.) + NO — 2 (насыщ.) =N 2 + 2Н 2 O (100°С)

NН 4 Сl + КNO 3 = N 2 O + 2Н 2 O + КСl (230-300 °С)

Получение : взаимодействие NH 3 с НСl в газовой фазе или NН 3 Н 2 О с НСl в растворе.

Гипохлорит кальция Са(С l О) 2 . Соль хлорноватистой кислоты НСlO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (образуется бесцветный раствор), гидролизуется по аниону. Реакционноспособный, полностью разлагается горячей водой, кислотами. Сильный окислитель. При стоянии раствор поглощает углекислый газ из воздуха. Является активной составной частью хлорной (белильной) извести — смеси неопределенного состава с СаСl 2 и Са(ОН) 2 . Уравнения важнейших реакций:

Са(СlO) 2 = СаСl 2 + O 2 (180 °С)

Са(СlO) 2(т) + 4НСl (конц.) = СаСl + 2Сl 2 + 2Н 2 O (80 °С)

Са(СlO) 2 + Н 2 O + СO 2 = СаСО 3 ↓ + 2НСlO (на холоду)

Са(СlO) 2 + 2Н 2 O 2 (разб.) = СаСl 2 + 2Н 2 O + 2O 2

Получение:

2Са(ОН) 2 (суспензия) + 2Сl 2(г) = Са(СlO) 2 + СаСl 2 + 2Н 2 O

Хлорат калия КС lO 3 . Соль хлорноватой кислоты НСlO 3 , наиболее известная соль кислородсодержащих кислот хлора. Техническое название — бертоллетова соль (по имени ее первооткрывателя К.-Л. Бертолле, 1786). Белый, плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (образуется бесцветный раствор), гидролиза нет. Разлагается концентрированными кислотами. Сильный окислитель при сплавлении.

Применяется как компонент взрывчатых и пиротехнических смесей, головок спичек, в лаборатории — твердый источник кислорода.

Уравнения важнейших реакций:

4КСlO 3 = ЗКСlO 4 + КСl (400 °С)

2КСlO 3 = 2КСl + 3O 2 (150-300 °С, кат. Мп O 2 )

КСlO 3(Т) + 6НСl (конц.) = КСl + 3Сl 2 + ЗН 2 O (50-80 °С)

3КСlO 3(Т) + 2Н 2 SO 4 (конц., гор.) = 2СlO 2 + КСlO 4 + Н 2 O + 2КНSO 4

(диоксид хлора на свету взрывается: 2С lO 2(Г) = Сl 2 + 2 O 2 )

2КСlO 3 + Е 2(изб.) = 2КЕO 3 + Сl 2 (в разб. Н NO 3 , Е = В r , I )

KClO 3 +H 2 O→H 2 +KClO 4 (Электролиз)

Получение КСlO 3 в промышленности — электролиз горячего раствора КСl (продукт КСlO 3 выделяется на аноде):

КСl + 3Н 2 O →Н 2 + КСlO 3 (40-60 °С,Электролиз)

Бромид калия КВ r . Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, чем

Качественная реакция на ион Вr — вытеснение брома из раствора КВr хлором и экстракция брома в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в бурый цвет).

Применяется как компонент травителей при гравировке по металлам, составная часть фотоэмульсий, лекарственное средство.

Уравнения важнейших реакций:

2КВr (т) + 2Н 2 SO 4 (КОНЦ., гор,) + МnO 2(т) =Вr 2 + МnSO 4 + 2Н 2 O + К 2 SO 4

5Вr — + 6Н + + ВrО 3 — = 3Вr 2 + 3Н 2 O

Вr — + Аg + =АgВr↓

2КВr (р) +Сl 2(Г) =2КСl + Вг 2(р)

КВr + 3Н 2 O→3Н 2 + КВrО 3 (60-80 °С, электролиз)

Получение:

К 2 СO 3 + 2НВr = 2КВ r + СO 2 + Н 2 O

Иодид калия К I . Бескислородная соль. Белый, негигроскопичный. При хранении на свету желтеет. Хорошо растворим в воде, гидролиза нет. Типичный восстановитель. Водный раствор КI хорошо растворяет I 2 за счет комплексообразования.

Качественная реакция на ион I — вытеснение иода из раствора КI недостатком хлора и экстракция иода в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в фиолетовый цвет).

Уравнения важнейших реакций:

10I — + 16Н + + 2МnO 4 — = 5I 2 ↓ + 2Мn 2+ + 8Н 2 O

6I — + 14Н + + Сr 2 O 7 2- =3I 2 ↓ + 2Сr 3+ + 7Н 2 O

2I — + 2Н + + Н 2 O 2 (3%) = I 2 ↓+ 2Н 2 O

2I — + 4Н + + 2NO 2 — = I 2 ↓ + 2NO + 2Н 2 O

5I — + 6Н + + IO 3 — = 3I 2 + 3Н 2 O

I — + Аg + = АgI (желт .)

2КI (р) + Сl 2(р) (нед.) =2КСl + I 2 ↓

КI + 3Н 2 O + 3Сl 2(р) (изб.) = КIO 3 + 6НСl (80°С)

КI (Р) + I 2(т) =K) (Р) (кор.) («йодная вода»)

КI + 3Н 2 O→ 3Н 2 + КIO 3 (электролиз,50-60 °С)

Получение:

К 2 СO 3 + 2НI = 2 К I + СO 2 + Н 2 O