Как из 220 сделать 12 без трансформатора. Усилитель мощности без силового трансформатора. Схема, описание. Схемы трансформаторного питания строятся по двум вариантам

Обзор схем бестрансформаторных источников питания (10+)

Бестрансформаторные источники питания - Понижающие

При проектировании малогабаритных устройств применение трансформаторов иногда является нежелательным. Кроме того при росте мировых цен на сырье (медь и железо) стоимость трансформаторов постоянно растет, в то время как стоимость других радиоэлектронных компонентов в целом снижается. В этой ситуации становится актуальным применение импульсных источников питания, в которых трансформаторы имеют небольшой размер и вес, а значит, небольшую стоимость, или проектирование бестрансформаторных источников питания и преобразователей напряжения. Мы планируем цикл статей о проектировании импульсных устройств, подпишитесь на новости , если эта тема Вам интересна. Сейчас остановимся на бестрансформаторных решениях.

У всех таких схем имеется общий недостаток - отсутствие гальванической развязки с высоковольтными шинами питания. Так что пользователи проектируемых устройств должны быть конструктивно защищены от любого контакта с элементами схемы, должна быть предусмотрена защита от влаги, попадания посторонних предметов. К схемам с бестрансформаторным питанием предъявляются такие же требования по безопасности, как и к высоковольтным схемам. Потенциал некоторых цепей относительно земли у них может быть равен потенциалу сетевого напряжения, даже если внутри самой схемы напряжение не превышает десятков вольт.

Бестрансформаторное питание обычно применяется в схемах автоматики и схемах формирования импульсов для преобразователей напряжения. В этих случаях гальваническую развязку обеспечить все равно невозможно, так как управляющие импульсы должны подаваться непосредственно на силовые элементы, находящиеся под сетевым напряжением.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
Схема импульсного источника питания ярких светодиодов....


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


Ремонт импульсного источника питания. Отремонтировать блок питания или преобразо...


Как работает повышающий стабилизированный преобразователь напряжения. Где он при...


Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов
Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  • На какие выводы подавать сетевое питание (230 вольт)?
  • С каких выводов снимать пониженное напряжение?
  • Каким оно будет (12 вольт, 24 или другим)?
  • Какую мощность сможет выдать трансформатор?
  • Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
  • Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
    Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

    • мультиметр с функциями омметра и вольтметра;
    • паяльник;
    • изолента или термоусадочная трубка;
    • сетевая вилка с проводом;
    • пара обычных проводов;
    • лампа накаливания;
    • штангенциркуль;
    • калькулятор.


    Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.
    Определение первичной и вторичной обмоток
    Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
    Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.


    Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
    Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.


    Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
    В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
    На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
    Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
    Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.
    Определение напряжения вторичной обмотки
    Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.


    Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
    Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
    Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
    Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.


    Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.


    Простые способы вычисления мощности силового трансформатора
    С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
    Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
    Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
    Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
    Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.


    Заключение
    Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

    Вам может понравиться:

    • Вязаные коврики крючком: интересные модели, схемы и…
    • Идеи для подушек из старых свитеров… Никогда бы не…
    • Советы, которые будут полезны и начинающим, и…

    Есть немало электронных устройств, которым потребуется около 200 вольт постоянного напряжения - это могут быть различные измерители, ламповая маломощная техника, импульсные зарядки смартфонов и мобильников. А ещё больше проблема усложняется тогда, когда питание не от розетки 220 вольт, а от батареи или автомобильного аккумулятора. Чтоб не пришлось искать громоздкий и довольно дорогостоящий по нынешним временам трансформатор, разработчики создали простой DC-DC импульсный регулятор, способный преобразовать 12 вольт в высокое.

    Модуль основан на MAX1771 - это типичный повышающий DC-DC-инвертор. Эта микросхема работает на частотах переключения до 300 кГц, что позволяет использовать миниатюрные компоненты поверхностного монтажа - SMD. Преобразователь принимает входные напряжения в пределах от 2 до 16 вольт, а выходное напряжение настраивается примерно на 200 вольт, с помощью внешних резисторов и потенциометров. Этого хватит для питания, например, схемы , собранного на лампах.

    Микросхема MAX1771 управляет мощным N-канальным МОП-транзистором, и с помощью индуктивности и фаст-диодов, производится высоковольтное преобразование. Схема способна работать с токами до 2 ампер на входе, или с 24 ваттами выходной мощности. Несложный рассчёт показывает, что это около 0,1 А при заданном напряжении. КПД примерно 90%.

    Трансформатор — это устройство, которое представляет собой сердечник с двумя обмотками. На них должно быть одинаковое количество витков, а сам сердечник набирается из электротехнической стали.

    На входе устройства подаётся напряжение, в обмотке появляется электродвижущая сила, которая создаёт магнитное поле. Через это поле проходят витки одной из катушек, благодаря чему возникает сила самоиндукции. В другой же возникает напряжение, отличающееся от первичного на столько раз, на сколько отличается число витков обеих обмоток.

    Действие трансформатора происходит так:

    • Ток проходит по первичной катушке, которая создаёт магнитное поле .
    • Все силовые линии замыкаются возле проводников катушки. Некоторые из этих силовых линий замыкаются возле проводников другой катушки. Получается, что обе связаны между собой при помощи магнитных линий .
    • Чем дальше расположены обмотки друг от друга, тем с меньшей силой возникает между ними магнитная связь, так как меньшее количество силовых линий первой цепляется за силовые линии второй.
    • Через первую проходит переменный ток (который меняется во времени и по определённому закону), значит, магнитное поле, которое создаётся, тоже будет переменным, то есть меняться во времени и по закону.
    • Из-за изменения тока в первой в обе катушки поступает магнитный поток, который меняет величину и направление .
      Происходит индукция переменной электродвижущей силы. Об этом говорится в законе электромагнитной индукции.
    • Если концы второй соединить с приёмниками электроэнергии, то в цепочке приёмников появится ток. К первой от генератора будет поступать энергия которая равная энергии, отдаваемой в цепочку второй. Энергия передаётся посредством переменного магнитного потока .

    Понижающий трансформатор необходим для преобразования электроэнергии, а именно для понижения её показателей, чтобы можно было предотвратить сгорание электротехники.

    Порядок сборки и подключение

    Несмотря на то, что данный прибор кажется на первый взгляд сложным устройством, его можно собрать самостоятельно. Для этого надо выполнить такие шаги:

    Пример схемы подключения понижающего трансформатора 220 на 12 В:

    Чтобы было легче наматывать катушки (на заводах для этого используют специальное оборудование), можно использовать две деревянные стойки, закреплённые на доске, и ось из металла, продетую между отверстиями в стойках. На одном конце следует металлический прутик изогнуть в виде рукоятки.

    Простые советы о том, на работоспособность, читайте в следующем обзоре.

    В 1891 г Никола Тесла разработал трансформатор (катушку), при помощи которого он ставил эксперименты с электрическими разрядами высоких напряжений. Как сделать трансформатор Тесла своими руками, узнайте .

    Полезная и интересная информация о подключении галогенных ламп через трансформатор — .

    Итоги

    • Трансформатором называется прибор с сердечником и двумя катушками-обмотками . На входе прибора подаётся электроэнергия, которая понижается до необходимых показателей.
    • Принцип работы понижающего трансформатора заключается в создании электродвижущей силы, которая создаёт магнитное поле . Витки одной из катушек проходят через это поле, и появляется сила самоиндукции. Ток изменяется, меняется его величина и направление. Энергия подаётся при помощи переменного магнитного поля.
    • Такой прибор нужен для преобразования энергии, благодаря чему предотвращается сгорание электротехники и выход её из строя.
    • Порядок сборки подобного устройства очень простой . Сначала следует сделать некоторые расчёты и можно приступать к работе. Чтобы можно было быстро и просто производить намотку катушек, необходимо сделать простое приспособление из доски, стоек и рукоятки.

    В заключение предлагаем вашему вниманию ещё один способ сборки и подключения понижающего трансформатора с 220 на 12 Вольт:

    Миф о ламповых усилителях.

    Ламповый усилитель не может питаться напрямую от электрической сети.

    Поэтому ставится преобразующий трансформатор 220 Вольт / …220 Вольт! Разумеется во вторичной обмотке бывает и больше 220, и меньше 220, в зависимости от выбора ламп и их режима. Но, согласитесь, довольно часто ламповые усилители запитываются от выпрямленного 220 В (т.е. постоянного 295…305 В – в зависимости, сколько у кого в розетке). Так, зачем в Hi-End аппаратуре, позиционирующей принцип “как можно меньше деталей в звуковом тракте” этот “лишний” элемент?!

    Представьте себе на минутку (придержите контраргументы пока), какие плюсы появятся у такого лампового усилителя. Итак, наверное уменьшиться стоимость самого аппарата (прикидывайте на сколько, если усилитель, допустим средней мощности и класс “А”). Вес. Значительно облегчиться такой УМ. Свободного места станет больше – однозначно. Нет силового трансформатора – нет наводок! Аргумент весьма впечатляющий. У кого ламповые усилители имеют свойство “фонить” (пускай даже самую малость), согласятся, что без “фона” было бы лучше. Комфортнее, так сказать. Гудеть и греться станет нечему. Что ещё? Тогда самый “убойный” аргумент: ваш усилитель не будет зависить от запаса мощности этого самого силового трансформатора. В вашем распоряжении вся ближайшая подстанция! Динамика звука будет максимально возможная для данной схемы вашего усилителя.

    Минутка прошла. Минусы. А вернее один минус, единственный, кстати. Но, минус с большой буквы – “Фаза”!! Опаснейшая штука для здоровья людей и самочувствия электроники. Однако, все пользуются компьютерами и ноутбуками. И в них имеется импульсные блоки питания, с пресловутым непосредственным питанием от электросети. Так там имеется “гальваническая развязка”, скажете вы. А кто Вам, простите, мешает поставить в Ваш ламповый усилитель эту самую “гальваническую развязку”. Кроме того, в любом ламповом усилителе она частично реализована. Не верите?! Вспомните выходной (звуковой) трансформатор. Сколько там вольт приходит на первичную обмотку? В среднем 300 Вольт, а то и больше. Но ведь никто не кричит “Нельзя!”. Ставят и успешно пользуются практически все владельцы ламповых усилителей. Надеюсь, логическую цепочку продолжать не стоит, на тему “как сделать гальваническую развязку всей схемы”, а не только по её “выходу”.

    Для тех, кто сомневается в пользе “лишней детали, вносящей дополнительные фазовые/частотные и прочие искажения”, привожу рабочую схему такого вот усилителя:

    Собственно, схема представляет собой “мостовое” включение двух идентичных усилителей. Этакий ОТЛ наоборот. Что это даёт? Снижаются требования к пульсациям питающего напряжения. Снижаются общие искажения, так как работающие в противофазе усилители компенсируют не только пульсации питающего напряжения, но собственные (вносимые каскадами) искажения. А так как выходной каскад выполнен по топологии “cascode circuit-SRPP – Shunt Regulated Push Pull (СРПП, каскад с ди-намической нагрузкой), то в выходном трансформаторе отсутствует постоянная составляющая (те пресловутые 300 Вольт анодного напряжения). Нет подмагничивания железа – нет специфических искажений, присущих классическим схемам. Во всяком случае, не надо применять специальные меры борьбы с этим вредным явлением. Что упрощает требования к выходному трансформатору. Кроме того, такая топология обещает лучшие качественные характеристики. Входной (драйверный) каскад так же выполнен “двухэтажным”. Драйверные каскады такого вида довольно часто применяются в ламповой технике. А вот в выходном каскаде значительно реже. Дело в том, что выходная мощность снимаемая с такого каскада -“каскода” в четыре раза ниже двух классически запараллеленных ламп. Поэтому, кого интересует КПД усилителя, в первую очередь (например фирм-производителей бытовой техники), а качество – во вторую, данная схемотехника не подойдёт по определнию. Тем не менее, максимальная выходная мощность у данного усилителя вполне достаточная, что бы раскачать даже АС с небольшой чувствительностью. И составляет 8 Вт. С акустическими же системами чувствительностью более 90 дБ/Вт/м это более чем достаточный запас. Напомню, что “ламповые Ватты” звучат несколько громче (если так можно выразиться), чем “транзисторные”.

    Для того, что бы сигнал поступал в противофазе на вход усилителя использован наиболее симметричный из существующих видов Фазоинвертора – трансформатор. Его коэффициент трансформации выбран 1:2+2 под стандарт СиДи (2 В эфф.). Таким образом входной трансформатор выполняет три функции: является фазоинвертором, согласующим трансформатором и выполняет функцию…”гальванической развязки”. Вход усилителя представляет собой симметричную линию (балансное подключение).

    Схема усилителя размещена в корпусе натурального дерева, который имеет лаковое покрытие. Отсутствуют какие либо экраны. Схема не нуждается в подстройке режимов или какой либо балансировке. Подбор пар (исправных) ламп не требуется. В драйвере использованы лампы 6Н9С. Тее, кто предпочитает “аналитическое-нейтральное” звучание более “музыкальному-ламповому” окрасу могут заменить эти лампы на 6Н8С (без изменения номиналов резисторов). Звук приобретёт “тот самый ламповый” оттенок звучания, который нравиться большенству пользователей музыкальных записей. Следует помнить, что коэффициент усиления ламп 6Н8С в два раза ниже 6Н9С, что приведет к уменьшению выходной мощности в два раза и составит 4 Вт. В выходном каскаде использованы “тугие” лампы 6Н13С всё той же “октальной” серии. Поэтому, оптимально начинать прослушивание музыки необходимо после 90 минут (!) после включения усилителя. Именно через такой промежуток времени усилитель начинает “звучать_как_надо”.

    На фотографии представлен усилитель №5, выполненный по этой схеме. Вместо выходных ламп 6Н13С использованы 6Н5С. Выходная мощность -7,5 Вт (8 Ом).

    Дополнительную информацию (намоточные данные согласующих трансформаторов и варианты применения готовых трансформаторов в качестве выходных и пр.) можно найти в журнале “Радиоконструтор” №2, за 2014 год, стр.6-9.