Шлифование на токарных станках. Приспособления для токарных и шлифовальных работ Потребность в шлифовальных головках

Отделочные операции выполняются для повышения чистоты, точности обработки или создания на поверхности детали специально предусмотренной шероховатости определенного узора. С этой целью на токарных станках производят опиливание, полирование, доводку, тонкое точение, обкатывание, раскатывание, выглаживание и накатывание.

§ 1. Опиливание

Назначение. Опиливание производят для зачистки поверхностей, удаления заусенцев, снятия небольших фасок, а также для срезания незначительного слоя металла, когда диаметр после обтачивания получился больше требуемого.
Инструменты. Опиливание выполняется напильниками различной формы: плоскими, квадратными, трехгранными, круглыми и др. Для грубых работ применяют драчевые напильники, для чистовых - личные и при необходимости получения высокой чистоты поверхности - бархатные. Они отличаются между собой количеством насечек на равной длине.
Перед пользованием напильники следует осмотреть и, если нужно, очистить от грязи и стружки металлической щеткой, перемещая ее вдоль насечек. Замасленные напильники предварительно натирают куском сухого мела или древесного угля.
Приемы работы. Для предотвращения травм опиливание на токарном станке следует вести осторожно и внимательно. Пользоваться можно только напильниками с плотно насаженной ручкой. Во время опиливания токарь должен стоять примерно под углом 45 вправо к оси центров станка. Ручка напильника зажимается в левой руке, а противоположный конец его удерживают пальцами правой руки (рис. 198),

B процессе опиливания напильник располагают перпендикуляр но к оси детали, слегка прижимают к обрабатываемой поверхности и плавно перемещают одновременно вперед и в сторону. При движении назад нажим немного ослабляют. Быстрое и резкое движение напильника нарушает форму детали. Нажим на напильник должен быть одинаковым на протяжении всего


его хода, иначе снятие металла будет неравномерным, что приведет к искажению формы обрабатываемой поверхности.
Режим работы. Окружная скорость обрабатываемой поверхности при опиливании принимается равной 15-20 м/мин.

§ 2. Полирование

Назначение. Полирование выполняют для повышения чистоты и блеска поверхностей, а также подготовки их под электролитическое покрытие хромом или никелем.
Инструменты. На токарных станках полирование осуществляется шлифовальными шкурками на бумаге или полотне. Сталь и цветные пластичные металлы обрабатывают корундовыми шкурками, чугун и хрупкие материалы - шкурками из карбида кремния. Зернистость шкурки (размер абразивных зерен в сотых долях миллиметра) принимается в зависимости от требуемой чистоты обрабатываемой поверхности в пределах 50-3;
Приемы работы. Кусочек шкурки удерживают пальцами правой руки или обеими руками за ее концы (рис. 199, а), прижи-


мают к вращающейся, детали и перемещают возвратно-поступательно вдоль полируемой поверхности. Удерживать шкурку рукой в обхват нельзя, так как она может намотаться на деталь и защемить пальцы.
При полировании стоят у станка так же, как при опиливании, примерно под углом 45° вправо к оси центров станка. Передний конец шкурки удерживают левой рукой, противоположный - правой.
Полирование выполняют последовательно несколькими шкур-ками с постепенным уменьшением их зернистости.
Цилиндрические поверхности удобно полировать жимками (рис. 199, б). Они состоят из двух деревянных брусков, соединенных на одном конце кожей или металлическим шарниром. Во внутренние радиусные углубления брусков укладывается шлифовальная шкурка. Обрабатываемую поверхность охватывают жимком, который удерживают руками, и выполняют полирование действиям:: аналогичными вышеописанным.
При полировании деталь сильно нагревается и удлиняется. Поэтому, когда она поджата центром, надо периодически проверять, насколько туго он зажат, и, если требуется, немного ослабить.
Режим работы. Для получения лучшей чистоты поверхности число оборотов детали должно быть возможно большим. При окончательном полировании поверхность детали рекомендуется слегка смазать маслом или натереть шкурку мелом.

§ 3. Тонкое точение

Назначение и сущность. Тонким точением обрабатывают наружные и внутренние поверхности с точностью до 1-2 классов и чистотой 8-10 классов. Такой вид обработки во многих Случаях может заменить шлифование.;
Сущность его состоит в срезании небольшого слоя металла с очень малой подачей и большой скоростью резания.
Требование к станкам для тонкого точения. Станки должны быть жесткие, точные (радиальное биение шпинделя не более 0,005 мм), быстроходные (число оборотов не менее 2000 об/мин) и иметь подачи менее 0,1 мм/об. Лимбы или индикаторные упоры должны позволять установку резцов на размер с точностью не менее 0,01 мм.
Не прибегая к специальным устройствам, точность подачи резца на глубину резания на любом токарном станке можно увеличить, пользуясь лимбом верхних салазок, повернутых на некоторый угол а оси центров станка (рис. 200). Если принять t - величину перемещения резца в угловом направлении, a t\ - перпендикулярно к оси детали, то необходимый угол разворота салазок а можно определить из формулы


Пример. При цене деления лимба верхних салазок 0,05 мм необходимо увеличить точность перемещения резца на глубину резания до 0,01 мм. Определить угол поворота верхних салазок.
Решение. В данном случае /i=0,01 мм, t=0,05 мм,
По формуле (27)


Применяемые резцы. Резцы для тонкого точения оснащаются пластинками твердого сплава марок ВК2 или ВКЗМ для обработки чугуна и Т30К4 для сталей. Для цветных металлов и пластмасс применяют алмазные резцы.
После заточки резцы обязательно доводятся. Главная режущая кромка


должна быть острой, без фаски. Завалы или незначительные зазубрины на ней недопустимы.
Вершина скругляется радиусом 0,5- 1 мм:
Передний угол у для твердосплавных резцов при обработке стали от -5° до +5°, для чугуна - 0°. Для алмазных резцов при обтачивании у = - 4°, при растачивании у = 0°. Задний угол выполняется в пределах 6-12°.
Припуски и режимы резани я. Припуск под тонкое точение оставляют в пределах 0,25-0,4 мм на диаметр при диаметре детали до 125 мм.
Режимы резания обычно ограничиваются возможностями станка. Их рекомендуется выбирать в следующих пределах: глубина резания 0,05-0,2 мм; подача при предварительной обработке 0,1-0,2 мм/об, при окончательной - 0,02-0,08 мм/об; скорость резания для черных металлов 100-200 м/мин, для цветных - 200-500 м/мин.

§ 4. Доводка

Назначение и сущность. Доводка поверхностей выполняется для повышения их точности до 1-2 классов и чистоты свыше 9-го класса.
В процессе доводки при помощи специальных инструментов- притиров, насыщенных абразивными порошками или пастами, с поверхности детали снимаются мельчайшие неровности, в результате чего она приобретает необходимую точность и чистоту.
Абразивные и связующие материалы. Рабочая поверхность притира насыщается абразивными порошками или пастами. Для этого применяют твердью абразивные материалы: порошки электрокорунда для доводки сталей и карбида кремния - для чугуна и других хрупких материалов.
Зернистость порошков выбирается в зависимости от требуемой чистоты обработки. Грубая доводка с чистотой V9-V1O выполняется шлифпорошками зернистостью 5-3, предварительная с чистотой до V 12 - микропорошками М40- М14; чистовая с чистотой до V 14 - микропорошками М10 - М5 (для микропорошков номер зернистости соответствует размерам зерен в микронах).
Из доводочных паст наибольшее распространение имеют пасты ГОИ. Они содержат мягкий абразивный материал - окись хрома (70-85%), а также активные химические и связующие вещества. Ими пользуются для доводки сталей и цветных металлов.
По доводочной способности пасты ГОИ делятся на грубые, средние и тонкие.
В качестве связующих и смазывающих материалов при доводке применяют керосин или минеральные масла.
Притиры. Они представляют собой втулки с продольным разрезом, позволяющим регулировать их по диаметру для компенсации износа. Для отверстий малого диаметра применяются нерегулируемые притиры: в виде круглого стержня.
Окончательная доводка ведется притирами с гладкой поверхностью (рис. 201, а). Притиры для предварительной доводки (рис. 201, б и в) снабжены продольными или винтовыми канавками, в которых собираются


остатки абразивного материала во время работы.
Притиры 3 для обработки отверстий имеют коническое отверстие с конусностью 1:50 или реже 1:30. Они устанавливаются на оправку 1 с такой же конусностью (рис. 201, г) и могут регулироваться по диаметру за счет осевого перемещения гайками 2 и 4. Притиры 3 (рис. 201, д) для доводки валов устанавливаются в жимки 1 и регулируются винтом 2.
Материал притира выбирают в зависимости от его назначения и. применяемого абразивного материала.
При доводке твердыми абразивными материалами, зерна которых вдавливаются в притир, материал последнего должен быть мягче материала обрабатываемой детали. Кроме того, чем крупнее зерна применяемого порошка, тем следует выбирать более мягкий материал для притира.
Для грубой доводки рекомендуются притиры из мягкой стали, меди, бронзы, латуни, а для предварительной и чистовой - из мелкозернистого серого чугуна средней твердости (НВ 140-170).
Для работы мягкими абразивными материалами (пасты на основе окиси хрома, окиси железа., пасты ГОИ), зерна которых не шаржируются, притир должен иметь большую твердость, чем доводимая деталь. В этом случае хорошие результаты обеспечиваются применением притиров из закаленной стали или серого чугуна повышенной твердости (НВ 200-220).
Притиры изготавливаются с высокой точностью. Их погрешности геометрической формы не должны превышать 0,005-0,01 мм.
Для предотвращения заклинивания в процессе доводки диаметры притиров должны обеспечивать некоторый зазор в соединении с деталью. Рекомендуются следующие зазоры: для грубой доводки - 0,1-0,15 мм, для предварительной - 0,03-0,06 мм, для чистовой - 0,005-0,01 мм.
Подготовка притира к работе. Насыщение (шаржирование) поверхности притира твердыми абразивными материалами выполняется прямым или косвенным способом.
При прямом способе шаржирования поверхность притира слегка смачивается керосином или маслом и равномерно посыпается тонким слоем абразивного порошка. Затем абразивные зерна вдавливаются в притир посредством прокатывания его по стальной закаленной плите или раскатывания закаленным валиком.
Косвенный способ шаржирования более прост, но менее эффективен. В этом случае на смазанную поверхность притира посыпают абразивный порошок, который шаржируется в процессе доводки.
Паста ГОИ густо разводится керосином и равномерным тонким слоем наносится на поверхность притира.
Подготовка детали под доводку. Поверхность детали должна быть обработана под доводку чистовым, тонким точением или шлифованием. Чем меньший припуск будет оставлен под доводку, тем более точно и быстро можно выдержать требуемый размер и чистоту обработки. Под доводку рекомендуется оставлять припуск 0,01-0,03 на диаметр.
Приемы доводки. При доводке наружных цилиндрических поверхностей обрабатываемую деталь закрепляют в патроне или в центрах, а притир надевают на нее и равномерно медленно перемещают вручную вдоль вращающейся детали. По мере износа притир регулируют по диаметру.
Для отводки отверстий притир закрепляют в шпинделе или патроне, а надетую на него деталь удерживают руками и равномерно перемещают в продольном направлении.
Дополнительно насыщать притир можно только абразивным порошком или пастой той же зернистости или более крупной. Предварительную и чистовую доводки выполняют разными притирами.
Режим доводки. Окружная скорость детали или притира принимается при предварительной доводке 10-20 м/мин, при чистовой- с целью уменьшения нагрева и расширения детали скорость снижают до 5-6 м/мин

§ 5. Упрочняющая обработка поверхности обкатыванием, раскатыванием и выглаживанием

Назначение. Этими видами обработки предусматривается цель упрочнения поверхностного слоя детали, повышения его износостойкости и улучшения чистоты поверхности до 8-10 классов. Процесс протекает без снятия стружки за счет разглаживания шероховатости, полученной после точения.
Инструменты. Обкатывание наружных поверхностей и раскатывание отверстий выполняются роликовыми и шариковыми обкатками и раскатками, выглаживание производится алмазными наконечниками.
Обкатка с симметричным расположением ролика на двух опорах (рис. 202, а) используется для обработки наружных цилиндрических и конических поверхностей на проход. Ролик имеет сферический профиль (рис. 203, а). При необходимости обработки ступенчатых поверхностей, уступов и. торцов применяют обкатку с односторонним расположением ролика (рис. 202, б), формы рабочего профиля которого изображены на рис. 203, б, в и г. Для обкатыва-

Ния уступов и торцов ролик располагают под углом 5-15° к обрабатываемой поверхности.
Ролики изготавливаются из легированных сталей Х12М или 9ХС и закаливаются до твердости HRC 58-65.
Шариковые обкатки и раскатки (рис. 202, в, г, д) снабжены пружиной, которая обеспечивает равномерное давление шарика на деталь. Необходимое давление пружины в зависимости от свойства обрабатываемого материала устанавливается регулировочным винтом. Такие обкатки и раскатки позволяют успешно обрабатывать нежесткие детали, так как шарик, имея точечный контакт с поверхностью, не нуждается в сильном поджиме. Обкатки (рис. 202, в) удобны для обработки торцов и уступов.
Для обкаток используются шарики из подшипников качения.
Алмазные наконечники 1 (рис. 204) предназначены для выглаживания поверхности детали. Они представляют собой державку с алмазом, рабочая поверхность которого имеет сферическую или цилиндрическую форму. Наконечники закрепляются в цилиндрической оправке 2 и совместно с ней устанавливаются в корпус 3. Требуемое давление алмаза на обрабатываемую поверхность создается регулируемой пружиной, помещенной внутрь корпуса.
Подготовка поверхности детали. Под упрочняющую обработку поверхность детали подготавливают чистовым точением. Степень шероховатости должна находиться в пределах 5-6 классов чистоты. При этом необходимо учитывать, что диаметр поверхности в процессе упрочняющей обработки может изменяться до 0,02- 0,03 мм. Поэтому наружные поверхности детали следует выполнять по наибольшему предельному

Размеру, а внутренние- по наименьшему.
Приемы работы. Упрочняющий инструмент, закрепленный в резцедержателе станка, подводят вплотную к поверхности вращающейся детали. Производят не сильный, но достаточно плотный поджим и за 2-3 возвратно-поступательных прохода с механической подачей осуществляют обработку до достижения требуемой чистоты поверхности. Для уменьшения трения и нагревания детали обрабатываемую поверхность рекомендуется смазать маслом.
Режим обработки. Подача: при обкатывании шариком - не более 0,1 мм/об, роликом с радиусным профилем - 0,1-0,2 мм/об. Выглаживание алмазом выполняется с подачей 0,03-0,06 мм/об.
Скорость вращения изделия 40-80 м/мин.

§ 6. Накатывание

Назначение. Накатыванием создается на поверхностях некоторых деталей (ручках, головках винтов и т. д.) специально предусмотренная шероховатость в виде рифлений определенного узора.
Инструменты и их установка на станке. Накатывание выполняется накатками, состоящими из накатного ролика и державки (рис. 205), Для нанесения прямого узора (рис. 205, а) пользуются однороликовой накаткой, сетчатого (рис. 205, б) - двухроликовой, соответственно с правым и левым направлениями рифлений.
Накатные ролики 1 изготавливаются из инструментальных сталей У1-2А или ХВГ и закаливаются до твердости HRC 63-65. На цилиндрической поверхности роликов фрезерованием выполняются рифления с углом профиля 70° для накатывания стальных деталей и 90°- для деталей из цветных металлов. В зависимости от диаметра обрабатываемой детали рифления располагают по окружности с шагом от 0,5 до 1,6 мм.
Накатка закрепляется с наименьшим вылетом в резцедержателе суппорта так, чтобы образующая ролика, располагалась строго параллельно оси детали. Проверку выполняют по обрабатываемой поверхности на просвет. Ось ролика однороликовой накатки должна находиться на уровне оси центров станка. Для двухроликовой накатки точность установки по высоте: не имеет существенного значения, так как в этом случае ролики самоустанавливаются по обрабатываемой поверхности за счет шарнирного соединения обоймы 2 с державкой 3 (см. рис. 205, б),
Подготовка поверхности детали под накатывание. При накатывании металл выдавливается. Поэтому поверхность детали обтачивают под накатывание до диаметра, меньше номинального на 0,25-0,5 шага рифлений.
Приемы накатывания. Ролики подводят вплотную к вращающейся детали и ручной поперечной подачей вдавливают в обрабатываемую поверхность на некоторую глубину. Выключив вращение детали, проверяют точность образовавшегося рисунка. Затем включают вращение шпинделя и продольную подачу и выполняют накатывание на требуемую длину за несколько проходов в обе стороны до получения полной высоты рифлений.
Отводить ролики от обрабатываемой поверхности в течение всего процесса накатывания нельзя, так как они вторично могут не попасть в предыдущие рифления и рисунок накатки исказится.
Накатные ролики следует периодически очищать проволочной щеткой от застрявших в углублениях металлических частиц.
Режим накатывания. Продольную подачу принимают примерно равной удвоенной величине шага рифлений (1-2,5 мм/об), скорость вращения детали - в пределах 15-20 м/мин. Обрабатываемую поверхность смазывают маслом.

Современные тенденции в сфере интеграции комбинированной обработки привели к тому, что на токарных станках также можно проводить шлифование. При выходе проблемы качества на первый план всегда обращают внимание на процесс финишной обработки, который называют шлифованием – выполнение механического воздействия за несколько проходов для уменьшения исходных погрешностей. Провести чистовую обработку при помощи токарного резца с получением качества, как при применении шлифовальных головок, невозможно из-за округления режущей кромки. Также не стоит забывать, что на токарном станке при небольших подачах может возникать вибрация, которая приведет к погрешности. По этой причине даже при появлении новых материалов, которые могут выдерживать сильное воздействие на протяжении длительного времени и не менять свою форму, шлифование остается основным методом, используемым для получения поверхности высокого класса шероховатости.

Потребность в шлифовальных головках

Получение тел вращения на токарных станках проводится на протяжении последних нескольких десятилетий. Как правило, шлифование проводилось на другом оборудовании. Этот момент определил следующий технологический процесс:

  1. выполнение чернового токарного точения для снятия большого слоя металла;
  2. выполнение чистового токарного точения для подготовки детали к финишному этапу технологического процесса;
  3. финишная обработка на круглошлифовальном станке.

Подобный технологический процесс определяет увеличение затрат за счет установки специального станка для выполнения финишной обработки. При создании большой партии изделий приобретение шлифовального станка окупается, но при мелкосерийном производстве его покупка приведет к повышению себестоимости одного изделия. Выходом из ситуации можно назвать использование специальных шлифовальных головок, которые также могут применяться для получения поверхности с высоким классом шероховатости.

Особенности конструкции

Шлифовальные головки представляют собой специальную конструкцию, которая используется для значительного расширения возможностей станка токарной группы. Этот механизм условно относится к оснастке. К конструктивным особенностям можно отнести:

  1. наличие собственного электродвигателя, мощность которого может составлять от 1 квт и более. этот момент определяет то, что головка может стать оснасткой для различных моделей токарных станков. как правило, токарное оборудование имеет закрытую коробку скоростей и не имеет отдельного привода для подключения рассматриваемой оснастки;
  2. установленный электродвигатель подключается к цепи токарного станка, что определяет универсальность всей конструкции. при этом также есть трехфазная вилка для включения в отдельную цепь питания;
  3. головка имеет собственную станину, которая при модернизации может крепиться жестко вместо стандартного резцедержателя. этот момент определяет то, что оборудование позволяет получать качественные поверхности при высокой механизации процесса. при изготовлении станины используется сталь, что позволяет предотвратить вибрацию при работе за счет повышения жесткости конструкции;
  4. передача вращения проходит при помощи ременной передачи для понижения оборотов.

Конструкция довольно проста. При ее рассмотрении стоит обратить внимание на тип станины. Это связано с тем, что только определенный тип станины может подойти вместо резцедержателя к определенной модели токарного станка.


Шлифовальная головка ВГР 150

Есть несколько популярных моделей головок для круглого шлифования, среди которых отметим ВГР 150. Она имеет следующие особенности:

  1. поставляется со шпинделем для наружного шлифования с диаметром круга 125 миллиметров;
  2. версия ВГР 150 также может использоваться для шлифования внутренних поверхностей с кругом диаметром от 8 до 40 миллиметров;
  3. установки модели можно провести на станке токарной группы с диаметром шпильки под резцедержатель не более 22,5 миллиметров. при этом станина ВГР 150 имеет поверхность прилегания 202 на 102 миллиметра;
  4. при наружном шлифовании показатель частоты оборотов шпинделя на холостом ходу составляет 5000 об/мин, для внутреннего – 16 800 об/мин на холостом ходу. при работе показатель может существенно снижаться, что зависит от значения поперечной подачи. при сильной подаче есть вероятность проскальзывания ремня на установленных шкивах, что позволяет исключить вероятность смещения выходного вала электродвигателя относительно обмоток, а также его деформации;
  5. приводные валы ВГР 150 установлены на прецизионных подшипниках;
  6. шпиндельная втулка и моторная база имеет возможность регулировки, что в большей степени повышает универсальность приспособления;
  7. при помощи ременной передачи можно проводить регулировку скорости вращения круга в зависимости от поставленных задач, как правило, есть 2 передачи;
  8. использовать ВГР 150 можно для получения размеров с точностью в пределах от 0,01 до 0,02 миллиметров. этот момент определяет то, что модель 150 и 200 могут использоваться для получения поверхности высокой чистоты.

Максимальный диаметральный размер заготовки при использовании ВГР 150 ограничивается продольным перемещением суппорта и зависит от особенностей токарного станка.

Сталь и чугун при помощи рассматриваемой оснастки могут пройти процесс финишной обработки на токарном станке. При этом можно достигнуть такой же показатель шероховатости, как и при использовании круглошлифовального оборудования. Модель 200 отличается от рассматриваемой мощностью установленного электродвигателя и максимальными диаметральными размерами устанавливаемых кругов. Подобным образом можно понизить стоимость производства деталей за счет повышения универсальности используемого оборудования. При этом отметим, что оснастка подойдет для старого и нового токарного оборудования, так как имеет универсальное применение.

Токарные станки используются для обработки деталей цилиндрической формы. Они включают в себя множество разновидностей, которые отличаются по размеру и наличию дополнительных функций. Такие промышленные модели как, очень распространены и широко используются в современной промышленности. Чтобы устройство нормально функционировало, требуется знать все особенности его деталей.

Станина токарного станка служит для закрепления практически всех механизмов и узлов, которые применяются на данном оборудовании. Зачастую ее отливают из чугуна, чтобы получить массивную и прочную конструкцию, которая смогла прослужить длительный срок. Это связано с тем, что она будет подвергаться большим нагрузкам. Не стоит также забывать об устойчивости, так как массивные большие модели используют огромную энергию во время работы и основание должно хорошо сопротивляться нагрузкам.

Станина и направляющие станка крепятся при помощи болтов к тумбам или парным ножкам. Если устройство короткое, то применяется две стойки. Чем оно длиннее, тем больше стоек может потребоваться. Большинство тумб имеет дверцы, что позволяет их использовать в качестве ящиков. К направляющим следует очень внимательно относиться и оберегать их возможности повреждения. Не желательно оставлять на них инструменты, заготовки и прочие изделия. если все же приходится располагать на них металлические предметы, то перед этим следует положить деревянную подкладку. Для лучшего ухода, перед каждым применением станка, станину требуется протирать и смазывать. Когда работа завершена, следует удалять с нее стружку, грязь и прочие лишние предметы.

Особенности конструкции станины металлорежущих станков могут отличаться в зависимости о конкретной модели, так как они разрабатываются для удобного и безопасного размещения всех узлов оборудования. Но основные положения во многих случаях остаются одинаковыми, так что на примере популярных моделей можно рассмотреть основы.

фото:устройство чугунной станины

  1. Продольное ребро;
  2. Продольное ребро;
  3. Поперечное ребро, служащее для связи продольных ребер;
  4. Призматические направляющие продольных ребер;
  5. Плоские направляющие, которые служат для установки задней и передней бабки, а также для передвижения по ним суппорта;

Стоит отметить, что у направляющих станины поперечное сечение может иметь различные формы. Обязательным правилом является соблюдение параллельного расположения, так что все должно быть равноудаленным от оси центров. Это требует точной фрезеровки или строгания. После этого осуществляется операция по шлифовке и шабрению. Все это обеспечивает точную обработку изделий, а также ликвидацию проблем с передвижением суппорта и возникновением толчков.

  • Станина токарного станка по металлу, которая представлена на рисунке «а» под номерами 1 и 2, имеет трапецеидальное сечение направляющих. В данном случае основной упор сделан на большую опорную поверхность. Они обладают большой износостойкостью, что позволяет долго оставлять свою точность. В то же время, для перемещения по ним суппорта нужно прилагать множество усилий, особенно, если он перекосился.
  • На рисунке «б» представлена станина с плоским прямоугольным сечением направляющих. В отличие от предыдущего, они имеют уже по два ребра жесткости, а не одному, что делает их крепче.
  • Рисунок «в» демонстрирует станину с направляющими треугольного сечения. С учетом того, что здесь используется достаточно малая опорная поверхность, с большим весом работать получается сложно, так что данный вид используется преимущественно для малых станков.
  • На рисунке «г» показана станина с треугольным сечением и опорной плоскостью. В данном случае она также применяется для станков мелких размеров.

Если станина предназначается для тяжелого станка, то она имеет не только большое сечение, но и большее сопротивление на изгиб. Одними из наиболее распространенных является такой вид, как представлен на рисунке «г». Здесь каретка суппорта делает упор на призму №3 спереди, а сзади упирается на плоскость №6. Чтобы не произошло опрокидывание, ее удерживает плоскость №7. При задаче направления основную роль играет призма №3, тем более, что она воспринимает на себя большую часть давления, осуществляемого резцом.

Если на станине возле передней бабки имеется выемка, то она служит для тог, чтобы обрабатывать изделия большого диаметра. Если же происходит обработка изделия, радиус которых меньше высоты центров, то выемку перекрывают специальным мостиком.

Ремонт станины токарного станка

Шабрение станины токарного станка является технологическим процессом во время которого станина выверяется для закрепления коробки подач при помощи рамного уровня. Благодаря этому можно будет в дальнейшем легко установить перпендикулярность поверхности крепления суппорта и фартука к коробке подач.

  1. Первым делом станина устанавливается на жесткий фундамент и проверить продольное направление по уровню вдоль поверхности, а поперечное направление по рамному уровню. Допустимые отклонения составляют не более 0,02 мм на 1 метр длины изделия.
  2. Шабрят верхние поверхности направляющей, сначала с одной стороны, используя поверочную линейку на краску. Во время этого процесса желательно периодически проверять извернутость направляющих.
  3. Затем шабрят поверхность второй направляющей. Максимальный допуск отклонений здесь остается таким же 0,02 мм на 1 метр длины изделия.

Шлифовка станины токарного станка

Шлифовка станины токарного станка состоит из следующих процедур:

  1. Необходимо провести зачистку и запиливание задиров и забоин имеющихся на поверхности;
  2. Станина устанавливается на столе продольно-строгального станка и надежно закрепляются там;
  3. Далее идет проверка извернутости направляющих, которая производится уложенного на мостике задней бабки уровня;
  4. Во время установки станины получается небольшой прогиб изделия, который следует исправить путем максимально плотного соприкосновения со столом;
  5. Повторно проверяется извернутость направляющих, чтобы результаты совпадали с тем, что было до закрепления;
  6. Только после этого приступают к шлифовке всех контактных поверхностей изделия. Процедура проводится при помощи торца круга чашечной формы. его зернистость должна быть К3 46 или КЧ 46, а твердость соответствовать СМ1К.

Наиболее широко распространенными приспособлениями для токарных и шлифовальных работ являются центры, кулачковые и цанговые патроны , которые применяют также и при других работах (например, сверлильных).

На рис. 122 показаны конструкции центров токарного станка: нормальные (рис. 122, α), со сферическим концом (рис. 122, б), применяемые при смещении осевой линии заготовки относительно линии центров станка, полуцентры (рис. 122, в), позволяющие совмещать наружное продольное точение и подрезку торцов. Для повышения износостойкости центров их армируют твердым сплавом или металлизируют поверхность конуса.

Из-за нагрева в процессе резания, вызывающего удлинение обрабатываемой заготовки, изменяется сила зажима. Для того чтобы зажимная сила была постоянна, в задней бабке располагают компенсаторы различных конструкций: пружинные, пневматические и гидравлические, которые позволяют несколько смещать пиноль при нагреве заготовки. Такие компенсаторы обычно используют при закреплении заготовки во вращающихся центрах.

Чтобы предотвратить прогиб нежестких заготовок валов, в качестве дополнительных опор применяют люнеты подвижного или неподвижного типа. Обычные конструкции неподвижных универсальных люнетов не отвечают требованиям скоростной обработки, так как кулачки люнета, изготовленные из бронзы или чугуна, быстро изнашиваются и в их сопряжении с деталью образуется зазор, что приводит к вибрациям. В. К. Семинский предложил модернизировать люнет (рис. 123).

В основании 1 люнета вместо кулачков 7 устанавливают шарикоподшипники, а гнездо под кулачок в крышке 2 растачивают и вставляют в него стержень 4 с пружиной 5. На стержне закреплена серьга 6 с двумя шарикоподшипниками. Шарикоподшипники основания люнета настраивают на диаметр по контрольному валику, устанавливаемому в центрах, или по самой обрабатываемой заготовке.

Затем накидывают крышку 2 люнета и гайкой 3 регулируют положение стержня 4 с таким расчетом, чтобы зазор между основанием и крышкой составлял 3…5 мм , после этого эксцентриком 8 прижимают крышку. При этом пружина 5 сжимается и шарикоподшипники, установленные в серьге, с силой начинают прижимать обрабатываемую деталь к шарикоподшипникам основания.

Биение из-за овальности и неодинаковой толщины различных участков обрабатываемой заготовки при данной конструкции люнета воспринимается пружиной 5, которая работает как амортизатор.

Наиболее распространенными устройствами передачи крутящего момента обрабатываемым заготовкам на шпинделе передней бабки являются поводковые устройства : хомутики, скобы, поводковые оправки, поводковые планшайбы, поводковые патроны, кулачковые патроны, цанговые зажимные устройства.

Обычные и самозажимные хомутики имеют ограниченное применение, так как требуют значительного времени для установки, поэтому чаще применяют самозажимные поводковые оправки. Устанавливать и снимать заготовки в этом случае можно при вращении шпинделя. Установленную в центрах заготовку перемещают влево поджимом пиноли, задней бабки, при этом в торец заготовки вдавливают зубья поводка, что обеспечивает передачу крутящего момента от шпинделя к заготовке.

Из патронов, применяющихся для установки и закрепления заготовок на токарных станках, наиболее распространены самоцентрирующие трехкулачковые патроны. Для закрепления несимметричных заготовок применяют обычно четырехкулачковые патроны с независимым перемещением каждого кулачка с помощью винта.

При базировании обрабатываемой заготовки по внутренней поверхности применяют разжимные оправки с пневматическим приводом. Наиболее характерной конструкцией пневматического поводкового патрона является патрон, показанный на рис, 124. В этой конструкции устанавливать и снимать заготовку можно не останавливая шпиндель станка. Патрон снабжен автоматически запирающимся плавающим центром. В отверстиях корпуса приспособления установлены плунжеры 7, в пазах которых находятся зубчатые колеса 5, вращающиеся на запрессованных в плунжеры 7 осях 6. Зубчатые колеса 5 находятся в зацеплении с реечными клиньями 8, которые своими скосами с помощью крестообразных вкладышей 4, находящихся в пазах колодок 3, перемещают колодки с эксцентриковыми кулачками зажимаемой заготовке. Кулачки 1 вращаются на осях 2, закрепленных в колодках 3. В середине патрона находится втулка 14 с плавающим патроном 16, жестко связанным с корпусом патрона. Головка 10 связана со штоком пневматического цилиндра качалки 9.

При зажиме головка 10 толкает плунжеры 7 и подает вперед втулку 15, сидящую на втулке 14. Кулачки 1 пружинными плунжерами 11 прижимаются к упорным винтам 12, которые обеспечивают касание средней части поверхности кулачка и зажимаемой заготовки. При упирании кулачков 1 в обрабатываемую заготовку зубчатые колеса 5, перекатываясь по зубьям реечных клиньев 8, перемещают втулку 15, которая своим корпусом и тремя шариками зажимает центр 16. Колодки 3 с кулачками 1 в нерабочем состоянии удерживаются пружинными плунжерами 13 на одинаковом расстоянии от центра патрона.

На рис. 125 приведена конструкция задней бабки токарного станка с встроенным вращающимся центром и пневматическим цилиндром для перемещения пиноли. Это устройство позволяет уменьшить затраты времени на перемещение пиноли. Пиноль 2 перемещается с вращающимся центром 1 посредством штока 3 и поршня 5 пневмоцилиндра 4. Когда сжатый воздух поступает в правую полость цилиндра, поршень, перемещаясь влево, толкает штоком пиноль к обрабатываемой заготовке.

Пневмоцилиндр 4 жестко закреплен на корпусе задней бабки. С помощью распределительного крана 6 осуществляют управление приводом.

Для обработки заготовок на токарных станках применяют пневматические трехкулачковые патроны с регулируемыми кулачками. Применение регулируемых кулачков обусловлено необходимостью обработки заготовок различных размеров. Частые перестановки кулачков (или накладок) вызывают необходимость их протачивать или шлифовать, что, естественно, затрудняет переналадку, особенно в течение рабочего дня. Показанная на рис. 126 конструкция позволяет не только регулировать кулачки в зависимости от формы заготовки или ее размеров, но и быстро переналаживать патрон для работы в. центрах. В корпусе 2 патрона находится муфта 1, соединенная резьбой с тягой пневматического привода. В проточку муфты входят длинные концы трех рычагов 3, а их короткие концы - в пазы ползушек 4, соединенных винтами 5 с кулачками 6. На торцевую поверхность патрона нанесена кольцевая риска 7, а на кулачках имеются деления, позволяющие предварительно устанавливать кулачки. При переналадке патрона для работ в центрах в центральное отверстие вставляют переходную втулку с нормальным центром, а один из кулачков используют в качестве поводка.

В некоторых случаях обрабатываемые заготовки с буртиками или фланцами целесообразно центрировать на коротких жестких пальцах или в выточках и зажимать вдоль оси. На рис. 127 показана конструкция пневматического приспособления для осевого зажима тонкостенной втулки с буртиком. Втулку центрируют в выточке диска 7, прикрепленного к корпусу 1, и зажимают вдоль оси тремя рычагами 6, посаженными на оси 5. Рычаги приводят в действие тягой, соединенной с винтом 2, при перемещении которой передвигается коромыслом 4 вместе с рычагами 6, зажимающими обрабатываемую заготовку. При движении тяги слева направо винт 2 посредством гайки 3 перемещает в сторону коромысло 4 с рычагами 6. Пальцы, на которые посажены рычаги 6, скользят по косым пазам диска 7 и таким образом при раскреплении обработанной заготовки несколько приподнимаются (как показано тонкой линией), позволяя освободить обработанную деталь и установить новую заготовку.

Закрепление по буртику позволяет обрабатывать как наружные, так и внутренние поверхности.

На предприятиях применяют также пневматические устройства со сменными зажимными рычагами, обеспечивающими концентричность наружной и внутренней обрабатываемых поверхностей. Конструкция такого приспособления приведена на рис. 128 и представляет собой корпус 5, внутри которого на шарнирных осях установлены рычаги 2 и 4. Короткие концы рычагов выступают наружу, а длинные установлены в прямоугольном пазу штока 3. В резьбовое отверстие штока ввернута тяга 1, соединенная со штоком пневмоцилиндра (на рисунке не показан). Корпус приспособления центрируется на планшайбе 7 станка втулкой 6.

При движении тяги 1 со штоком 3 справа налево короткие концы рычагов 2 и 4 зажимают заготовку.

Применяют также патроны с установкой заготовок по обработанным базам. На рис. 129 показана конструкция патрона с установкой заготовки по центральному отверстию и зажимом за фланец. При креплении кулачки 3, сидящие на концах штоков 1, своими выступами опираются на планку 2, разгружая штоки от изгибающих сил. При раскреплении обработанной детали кулачки 3 нижними наружными выступами 4 упираются в планку 2, освобождая деталь, а внутренними выступами 5 сталкивают ее с установочного пальца.

Для обработки на оправках применяют различные виды разжимных пневматических устройств. На рис. 130 показана конструкция трех кулачковой разжимной оправки. Она состоит из корпуса 2 с чугунной резьбовой втулкой 3, навинченной на шпиндель станка. Заготовку зажимают тремя кулачками 4, расположенными под углом 120° в отверстиях корпуса оправки и выдвигаемыми с помощью втулки 5 с тремя клиньями. Втулка перемещается тягой 1 от пневматического привода. Кулачки 4 возвращаются в исходное положение при освобождении обработанной детали пружинными кольцами 6.

Основным недостатком размещения пневматического привода на заднем конце шпинделя является невозможность обработки прутковых заготовок. На рис. 131 показана конструкция пневматического цангового патрона, который позволяет обрабатывать заготовки из прутка, проходящего через отверстия шпинделя станка. В данной конструкции сжатый воздух поступает через распределительную коробку, укрепленную на заднем конце шпинделя станка. Воздуховод от распределительной коробки к патрону расположен в двух металлических трубках 1, впаянных в канавки трубы 2.

При зажиме заготовки сжатый воздух направляется в правую полость патрона, перемещая поршень 3 с привернутым в нему кольцом 5. Это кольцо, надавливая на кулачки 6, перемещает их по конической поверхности втулки 4, зажимая тем самым заготовку. Для раскрепления обработанной детали сжатый воздух направляется в левую полость патрона, сдвигая поршень 3 вправо, при этом кулачки 6 под воздействием пружинного кольца 7 расходятся.

С целью улучшения качества поверхности или повышения точности деталей на токарных станках могут выполняться следующие отделочные операции: полирование абразивной шкуркой, притирка (доводка) поверхностей, обкатка наружных поверхностей и раскатка отверстий роликами или шариками, а также накатка.

Полирование абразивной шкуркой применяется для получения чистой поверхности у деталей невысокой точности. Абразивные шкурки с крупными зернами (№ 6, 5 и 4) применяются для зачистки грубых необработанных поверхностей. Шкурки со средними зернами (№3 и 2) используются для полирования поверхностей с обработкой V4. Полирование шкурками с мелкими зернами (№ 1 и 0) обеспечивает получение поверхности с чистотой V 5, V 6. И, наконец, полирование шкурками с очень малым зерном (шкурки № 00 и №000) позволяет получить поверхности с чистотой V 7, V 8 и даже V 9.

При полировании станок включается на средние или максимальные обороты (в зависимости от диаметра изделия), шкурка тремя пальцами прижимается к обрабатываемой по­верхности и медленно перемещается вперед и назад вдоль изделия. Полоску шкурки можно также удерживать в натянутом состоянии за концы двумя руками и, прижимая ее к изделию, производить полирование. При обработке изделий небольшого диаметра используются жимки - приспособление, состоящее из двух деревянных брусков, шарнирно связанных между собой. Бруски имеют впадины, соответствующие диаметру обрабатываемого изделия. В углубления жимка вкладывается абразивная шкурка или наносится абразивный порошок, смешанный с маслом. При полировании жимок сжимается левой рукой и перемещается вдоль изделия.

Полирование желательно вести с использованием смазочно-охлаждающей жидкости. Окончательное полирование выполняется шкуркой, натертой мелом.

Притирка (доводка) поверхностей служит для окончательной отделки поверхностей после тонкой обточки, расточки, шлифования или развертывания. При помощи притирки можно достигнуть 1-го класса точности и чистоты поверхности по Vl2-Vl3. Притирка наружных цилиндрических поверхностей производится притирами, имеющими форму разрезной втулки. Внутренний диаметр притира должен быть больше диаметра изделия на 0,15 мм при черновой обработке и на 0,05 мм - при чистовой. Толщина стенок при­тира должна быть от 1/6 до 1/8 его диаметра. Притир изготовляется из чугуна для обработки закаленной стали и из бронзы, латуни или меди для остальных металлов и сплавов.

Втулка-притир шаржируется изнутри мелким абразивным порошком, смешанным с маслом, или покрывается доводочной пастой ГОИ. Притир вставляется в металлический жимок и надевается на деталь. Болтом обеспечивается небольшое равномерное прижатие притира и детали. Притирка выполняется при скорости вращательного движения 10-20 м/мин с медленным возвратно-поступательным движением притира вдоль детали. Припуск на притирку устанавливается в размере 0,015 мм для деталей диаметром 10-20 мм и 0,025 мм для диаметров 20 - 75 мм.

Схема притирки отверстия. Втулка-притир надевается на конусную оправку, закрепляемую в патроне. Конусность оправки принимается равной 1/30. Наружная поверхность притира покрывается абразивным порошком, смешанным с маслом или пастой ГОИ. Деталь надевается на притир с легким усилием. Для обеспечения правильной формы отверстия длина притира должна быть больше длины отверстия.

Накатывание рифлений. Рифления, наносимые на детали приборов, приспособлений, инструментов, бывают прямыми или перекрестными. Они выполняются путем накаты­вания специальными роликами, закрепленными в державке. Для прямых рифлений используется один ролик соответствующего шага, для перекрестных рифлений применяется державка с двумя роликами, расположенными точно один над другим. На цилиндрической поверхности роликов нанесены зубчики определенного шага, величина которого зависит от диаметра изделия. При прямом рифлении зубчики расположены параллельно оси ролика, при перекрестном - наклонной имеют встречное направление.

Державка с роликами устанавливается в резцедержатель по линии центров, перпендикулярно к оси изделия. Поперечной подачей с усилием ролик вдавливается в поверхность вращающегося изделия. После нескольких оборотов проверяется попадание зубчиков ролика в сделанные им насечки и затем включается механическая продольная подача. Накатка выполняется за 4 - 8 проходов на деталях из стали и за 6- 10 проходов - на деталях из цветных металлов. Окружная скорость детали составляет 10-25 м/мин для стали и 50-100 м/мин для цветных металлов. Накатывание ведется со смазкой машинным или веретенным маслом. Насечка роликов периодически очищается от налипших частичек металла.