Счетчик импульсов на ЖКИ. Простой счётчик числа оборотов - Конструкции простой сложности - Схемы для начинающих Программируемый счетчик импульсов схема

видео работы устройства

Схема собрана на микроконтроллере PIC16F628A. Она может считать входные импульсы от 0 до 9999. Импульсы поступают на линию порта RA3 (кнопка SA1 активный уровень низкий). С каждым импульсом показания индикатора меняются на +1. После 999 импульса на индикаторе высвечивается 0 и загорается точка начала второй тысячи (правая по схеме) и т. д. Так счёт может продолжаться до значения 9999. После этого счёт останавливается. Кнопка SA3 (линия порта RА1) служит для сброса показаний в 0.

Схема счётчика импульсов с памятью на микроконтроллере

Изначально схема была изготовлена для работы с питанием от трёх пальчиковых батарей. Поэтому с целью экономии энергии в схему включена кнопка включения индикации для контроля состояния счётчика SA2 (линия порта RA4). Если в этой кнопке нет необходимости, её контакты можно закоротить. В схеме можно использовать подтягивающие резисторы в пределах от 1к до 10к. Биты конфигурации INTRC I/O и PWRTE установлены. При отключении питания показания счётчика в памяти контроллера сохраняются. При погашенном индикаторе схема остаётся работоспособной при снижении питания до 3,5 вольт. Практика показала, что заряда батареек хватает почти на неделю непрерывной работы схемы.


Печатная плата счётчика


Фото счетчика

Схема, прошивка МК и печатная плата в формате S-layuout в архиве (15кб) .

От администратора . Резисторы R1-R3 можно выбрать номиналом до 10К.

Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).

Счетчики импульсов классифицируют

● по модулю счета:
. двоично-десятичные;
. двоичные;
. с произвольным постоянным модулем счета;
. с переменным модулем счета;
. по направлению счета:
. суммирующие;
. вычитающие;
. реверсивные;
● по способу формирования внутренних связей:
. с последовательным переносом;
. с параллельным переносом;
. с комбинированным переносом;
. кольцевые.

Суммирующий счетчик импульсов

Рассмотрим суммирующий счетчик (рис. 3.67, а ). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.

Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б . Через К си обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду. В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.

Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.
{xtypo_quote}В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).{/xtypo_quote}

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q 1 станет равным 0, a ¯ Q 1 − 1.

Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Q x = 0). Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).

После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.

Трехразрядный реверсивный счетчик с последовательным переносом

Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).

В режиме вычитания входные сигналы должны подаваться на вход Т в. На вход Т с при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Т в, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1. При поступлении второго импульса на вход Т в на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Т с. На вход Т в подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):
● ИЕ6 — двоично-десятичный реверсивный счетчик;
● ИЕ7 — двоичный реверсивный счетчик.

Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число. Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.

-20 dB писал:
А почему не подойти к делу малой кровью? Если есть что-то вроде уже упомянутого выше ИЖЦ5-4/8, с раздельными выводами сегментов?

В заначках с советских времён неиспользуемых К176ИЕ4 осталось море (счетчик/делитель на 10 с семисегментным дешифратором и выходом переноса, использовался для формирования единиц минут и часов в электронных часах, неполный аналог - CD4026 - в чём неполнота, не смотрел... пока) в классическом включении для управления ЖК. 4 шт - по 2 на канал, + 2 шт. 176(561)ЛЕ5 или ЛА7 - одна для формирователей одиночных импульсов (подавителей дребезга контактов), вторая - для формирования меандра для "засветки" ЖК индикатора?

Конечно, на МП решение красивее, но на мусоре - дешевле, и решается исключительно на коленке... С программированием МП, например, у меня туго (если только готовый дамп кто-то подсуетит) - мне с железяками проще.


Ну вот тут я готов поспорить. Давайте посчитаем. Для начала стоимость:
1. PIC12LF629 (SOIC-8) - 40руб. (~1,15$)
2. Дисплей от Моторола С200/С205/Т190/Т191 - около 90руб (~2.57$) Кроме того разрешение 98х64 - рисуй и пиши чо хочешь.
3. Рассыпуха (SMD-резюки, кнопочки, SMD-конденсаторы и прочее) на вскидку - около 50руб. (~1,42$)

Итого: ~180руб (~5$)

Корпус, аккум (я бы выбрал Lo-Pol акк от той же моторолки С200 - компактно, ёмко, недорого (сравнительно)) - не считаем, так как и то и другое нужно в обоих вариантах.

Теперь Ваш вариант:

1. ИЖЦ5-4/8 - около 50руб (~1.42$)
2. К176ИЕ4 (CD4026) - 15руб (~0,42$)x4=60руб(~1.68$)
3. К176ЛА7 - 5руб (~0,14$)x4=20руб(~0.56$)
4. Рассыпуха (SMD-резюки, кнопочки, SMD-конденсаторы и прочее) на вскидку - около 50руб. (~1,42$)

Итого: ~180руб(~5$)

В чём выгода?

Теперь прикинем ТТХ и функционал:

У варианта с МК поторебление будет максимум 20мА, в то время как в Вашем варианте, я думаю раза в 1,5...2 больше. Кроме того в Вашем варианте - сложность (относительная) печатной платы на 7 корпусах+многогогая ИЖЦ5-4/8 (наверняк - двусторонняя), невозможность модернизировать устройство (добавить или изменить функционал) не влезая в схему (только на программном уровне), отсутствие возможности организовать память на измерения (счёт), питание не менее 5В (с меньшего Вы не раскачаете ИЖЦ), вес и габариты. Можно много ещё привести доводов. Теперь вариант с МК. Про ток потребления уже написал - 20мА макс. + возможность спящего режима (потребление - 1...5 мА (в основном - LCD)), сложность платы для одной 8-ногой микросхемы и 5 выводного разъёмчика для мотороловского LCD - смешно даже говорить. Гибкость (можно программно, без изменения схемы и платы наворотить такого - волосы дыбом встанут), информативность графического 98х64 дисплея - ни в какое сравнение с 4,5 разрядами 7-сегментного ИЖЦ. питание - 3...3,5В (можно даже таблеточку CR2032, но лучше всё таки Li-Pol от мабылы). Возможность организации многоячейной памяти на результаты измерений (счёта) прибора - опять таки только на программном уровне без вмешательства в схему и плату. Ну и наконец - габариты и вес ни в какое сравнение с Вашим вариантом. Аргумент - "я не умею программировать" не принимется - кто хочет, тот найдёт выход. Я до вчерашнего дня не умел работать с дисплеем от мобильника Моторола С205. Теперь умею. Прошли сутки. Потому что мне это НАДО. В конце концов Вы правы - можно кого нибудь и попросить.)) Вот примерно так. И не в красоте дело, а в том, что дискретная логика безнадёжно устарела как морально так и технически в качестве основного элемента схемотехники. То, для чего требовались десятки корпусов с диким общим потреблением, сложностью ПП и огромными габаритами, теперь можно собрать а 28-40 ногом МК легко и непринуждённо - поверьте мне. Сейчас даже инфы по МК гораздо больше чем по дискретной логике - и это вполне объяснимо.

Счетчики электрических импульсов

Счетчиком называют цифровое устройство, обеспечивающее подсчет числа электрических импульсов. Коэффициент пересчета счетчика равен минимальному числу импульсов, поступивших на вход счетчика, после которых состояния на выходе счетчика начинают повторяться. Счетчик называют суммирующим, если после каждого очередного импульса цифровой код на выходе счетчика увеличивается на единицу. В вычитающем счетчике после каждого импульса на входе счетчика цифровой код на выходе уменьшается на единицу. Счетчики, в которых возможно переключение с режима суммирования на режим вычитания, называются реверсивными.

Счетчики могут быть с предварительной установкой. В таких счетчиках информация с входов предварительной установки передается на выходы счетчика по сигналу на специальном входе предварительной установки. По своей структуре счетчики делятся на последовательные, параллельные и параллельно-последовательные. Последовательный двоичный счетчик образован цепочкой последовательно включенных счетных триггеров. В параллельном счетчике счетные импульсы подаются одновременно на входы всех разрядов счетчика. Параллельные счетчики имеют большее быстродействие по сравнению с последовательными. Параллельно-последовательные счетчики имеют высокое быстродействие и большое значе ние коэффициента пересчета.

Счетчики электрических импульсов имеются как в ТТЛ, так и в КМОП сериях. В качестве примера счетчика ТТЛ рассмотрим микросхему К155ИЕ5. Функциональная схема счетчика К155ИЕ5 приведена на рисунке 1.51,а, а его условное обозначение на принципиальных схемах на рисунке 1.51,б. Счетчик К155ИЕ5 имеет фактически два счетчика: с коэффициентом пересчета два (вход С0 и выход Q 0) и с коэффициентом пересчета восемь (вход С1 и выходы Q 1, Q 2, Q 3). Счетчик с коэффициентом пересчета шестнадцать легко получается, если соединить выход Q 0 с входом С1, а импульсы подавать на вход С0. Временная диаграмма работы такого счетчика приведена на рисунке 1.52.

На рисунке 1.53 приведены схемы подключения, изменяющие коэффициент пересчета счетчика К155ИЕ5. Выходы счетчика Q 0, Q 1, Q 2, Q 3 имеют соответственно весовые коэффициенты 1, 2, 4, 8. Соединив выходы Q 1, Q 2 с входами установки счетчика в нуль, получим счетчик с коэффициентом пересчета шесть (рис. 1.53,а). На рисунке 1.53,б показана схема подключения для получения коэффициента пересчета десять, а на рисунке 1.53,в – двенадцать. Однако в схемах, приведенных на рисунках 1.53,а – в, отсутствует возможность установки счетчиков в нулевое состояние.

На рисунках 1.54,а, б приведены соответственно счетчики с коэффициентами пересчета шесть и семь, в которых предусмотрен вход установки счетчика в нулевое состояние. Анализ работы схем, приведенных на рисунках 1.53 – 1.54, показывает, что для получения заданного коэффициента пересчета соединяют с входами логического элемента И те выходы счетчика, весовые коэффициенты которых в сумме дают необходимый коэффициент пересчета.

В таблице1.3 приведены состояния на выходах счетчика с коэффициентом пересчета десять после поступления каждого очередного импульса, причем счетчик предварительно был установлен в нулевое состояние.

Рассмотрим некоторые из счетчиков КМОП серии. На рисунке 1.55 приведено условное обозначение микросхемы К561ИЕ8 – десятичного счетчика с дешифратором. Микросхема имеет вход установки в нулевое состояние R , вход для подачи счетных импульсов положительной полярности CP и вход для подачи счетных импульсов отрицательной полярности CN .

Переключение счетчика происходит по спадам импульсов положительной полярности на входе CP , при этом на входе CN должна быть логическая единица. Переключение счетчика будет происходить по спадам импульсов отрицательной полярности на входе CN , если на входе CP логический нуль. На одном из десяти выходов счетчика всегда присутствует логическая единица. Установка счетчика в нуль происходит при подаче на вход R логической единицы. При установке счетчика в нулевое состояние на выходе «0» установится логическая единица, а на всех остальных выходах – логические нули. Микросхемы К561ИЕ8 можно объединять в многоразрядные счетчики с последовательным переносом, соединяя выход переноса предыдущей микросхемы с входом CN последующей. На рисунке 1.56 приведена схема многоразрядного счетчика на микросхемах К561ИЕ10.

Промышленностью выпускаются счетчики для электронных часов. Рассмотрим некоторые из них. На рисунке 1.57 приведено условное обозначение микросхемы К176ИЕ3, а на рисунке 1.58 – микросхемы К176ИЕ4. На этих рисунках выходы микросхем показаны для стандартного обозначения сегментов индикатора, приведенного на рисунке 1.59. Эти микросхемы отличаются друг от друга коэффициентом пересчета. Коэффициент пересчета микросхемы К176ИЕ3 равен шести, а коэффициент пересчета микросхемы К176ИЕ4 равен десяти. Установка в нуль рассматриваемых счетчиков осуществляется подачей сигнала логической единицы на вход R . Переключение триггеров счетчика происходит по спаду положительных импульсов на входе С. Микросхемы имеют выход переноса р (вывод 2), к которому подключается обычно вход следующего счетчика. Спад напряжения на этом выходе формируется в момент перехода счетчика из состояния 9 в состояние 0. Микросхемы различаются сигналами на выводе 3. Для микросхемы К176ИЕ3 на выводе 3 появляется логическая единица при установке счетчика в состояние 2, а для микросхемы К176ИЕ4 – в состояние 4. Это необходимо для обнуления показаний часов в 24 часа.

При подаче сигнала логического нуля на вход S логические единицы на выходах счетчика будут на тех сегментах, которые отображают число импульсов, поступивших на вход счетчика. При подаче на вход S логической единицы полярность выходных сигналов изменяется. Возможность переключения полярности выходных сигналов позволяет достаточно просто изменить схему подключения цифровых индикаторов.

На рисунке 1.60 приведена схема подключения люминесцентного индикатора к выходам микросхемы К176ИЕ4. Подключение индикатора к выходам микросхемы К176ИЕ3 будет аналогичным.

Схемы подключения светодиодных индикаторов к выходам микросхемы 176ИЕ4 приведены на рисунках 1.61,а и 1.61,б. На входе S устанавливается логический нуль для индикаторов с общим катодом и логическая единица для индикаторов с общим анодом.

Описание микросхем К176ИЕ5, К176ИЕ12, К176ИЕ13, К176ИЕ17, К176ИЕ18, К176ИД2, К176ИД3 и их применение в электронных часах можно найти в . Микросхемы К176ИЕ12, К176ИЕ13, К176ИЕ17, К176ИЕ18 допускают напряжение питания от 3 до 15 В.

Это устройство предназначено для подсчета числа оборотов вала механического устройства. Кроме простого подсчета с индикацией на светодиодном табло в десятичных числах, счетчик выдает информацию о числе оборотов в двоичном десятиразрядном коде, что может быть использовано при конструировании автоматического устройства. Счетчик состоит из оптического датчика оборотов, представляющего собой оптопару из постоянно светящегося ИК-светодиода и фотодиода, между которыми расположен диск из непрозрачного материала, в котором вырезан сектор. Диск закреплен на валу механического устройства, количество оборотов которого нужно считать. И, комбинации из двух счетчиков, - десятичного трехразрядного с выводом на светодиодные семисегментные индикаторы, и двоичного десятиразрядного. Счетчики работают синхронно, но независимо друг от друга. Светодиод HL1 излучает непрерывный световой поток, которые поступает на фотодиод через прорезь в измерительном диске. При вращении диска получаются импульсы, а поскольку, прорезь в диске одна, то число этих импульсов равно числу оборотов диска. Триггер Шмитта на D1.1 и D1.2 преобразует импульсы напряжения на R2, вызванные изменением фототока через фотодиод, в импульсы логического уровня, пригодные для восприятия счетчиками серии К176 и К561. Число импульсов (число оборотов диска) одновременно подсчитывает двумя счетчиками - трехдекадным десятичным на микросхемах D2-D4 и двоичным на D5. Информация о числе оборотов выводится на цифровое табло, составленное из трех семисегментных светодиодных индикаторов Н1-Н3, и в виде десятиразрядного двоичного кода, который снимается с выходов счетчика D5. Обнуление всех счетчиков в момент включения питания происходит одновременно, чему способствует наличие элемента D1.3. При потребности в кнопке обнуления, её можно подключить параллельно конденсатору С1. Если нужно, чтобы сигнал обнуления поступал от внешнего устройства или логической схемы, нужно микросхему К561ЛЕ5 заменить на К561ЛА7, и отсоединить её вывод 13 от вывода 12 и С1. Теперь обнуление можно будет сделать, подав, от внешнего логического узла, логический ноль на вывод 13 D1.3. В схеме можно использовать другие светодиодные семисегментные индикаторы, аналогичные АЛС324. Если индикаторы с общим катодом, - нужно на выводы 6 D2-D4 подать не единицу, а ноль. Микросхемы К561 можно заменить аналогами серий К176, К1561 или импортными аналогами. Светодиод - любой ИК-светодиод (от пульта ДУ аппаратуры). Фотодиод - любой из тех, что использовался в системах ДУ телевизоров типа УСЦТ. Настройка состоит в установке чувствительности фотодиода подбором номинала R2.

Радиоконструктор №2 2003г стр. 24