Физические и математические модели. Математическое моделирование и вычислительный эксперимент

При расчете физических процессов составляется математическая модель - система уравнений, описывающая зависимости между физическими величинами при некоторых упрощающих допущениях. Например, при движении точки вблизи поверхности Земли полагается ускорение свободного падения постоянным, не зависящим от высоты расположения точки над поверхностью. Для тел, движущихся с небольшой скоростью или в разряженной атмосфере, пренебрегают сопротивлением воздуха. Само точка часто заменяют материальной точкой, т. е. размерами точки пренебрегают. Физические процессы описываются, как правило системой дифференциальных уравнений, для решения которой применяют различные численные методы (модели). Широко используется метод конечных разностей, в котором бесконечно малые приращения переменных заменяют малыми (конечными) приращениями.

Например, изменение параметра времени представляют в виде:dt=t 2 -t 1 , а изменение функции "Х": dX(t) = X(t)-X(t-dt) = X(t 2)-X(t 1) = X 2 -X 1 .

Рассмотрим задачу определения траектории точки, движущегося в некоторой плоскости под действием различных сил. Например, необходимо вычислить траекторию движения снаряда с учетом сопротивления воздуха или ракеты с учетом изменения ее массы, движущихся в поле тяготения Земли.

Координаты точки X(t), Y(t) в некоторый момент времени "t" можно определить, зная координаты точки X(t-dt), Y(t-dt) в предыдущий момент времени "t-dt" и изменение (приращение) координат dX, dY:

X(t) = X(t-dt) + dX(t),

Y(t) = Y(t-dt) + dY(t).

Если временной интервал выбрать достаточно малым, то можно полагать, что скорость точки на этом интервале не изменяется и приращения координат определяются по формулам:

dX(t) = Vx(t)dt,

dY(t) = Vy(t)dt.

Здесь Vx(t), Vy(t) - проекции скорости на оси координат.

Составляющие скорости Vx(t) и Vy(t) можно вычислить по формулам:

Vx(t) = Vx(t-dt) + Ax(t)*dt,

Vy(t) = Vy(t-dt) + Ay(t)*dt.

Здесь Ax(t), Ay(t) - проекции ускорения на оси координат.

Ускорение определяется силами, действующими на точка: ускорение равно равнодействующей силе, деленной на массу точки. Силы могут зависеть от координат точки, времени и скорости точки. Например, ускорение ракеты в поле тяготения планеты обратно пропорционально квадрату расстояния до центра планеты. При включении двигателя ракеты ускорение зависит от времени (программы работы двигателя). При движении в плотных слоях атмосферы на ракету действуют силы сопротивления воздуха, зависящие от скорости движения, т. е. ускорение зависит от скорости.



Приведем алгоритм расчета траектории движения точки:

1. Определяем силы, действующие на точка, и находим проекции ускорения на оси координат. В общем случае ускорение точки зависит от многих факторов и в момент времени t задается как функция от времени, скорости и координат точки:

Ax:= Fx(Vx, Vy, X, Y, t); Ay:= Fy(Vx, Vy, X, Y, t);

Где Vx, Vy, Ax, Ay - проекции скорости и ускорения.

2.Задаем начальное положение точки - координаты X, Y и начальную скорость и ускорение в виде проекций на оси координат:

X:= X0; Y:= Y0; Vx:= V*cos(fi); Vy:= V*sin(fi);

Ax:= Fx(Vx, Vy, X, Y, t);

Ay:= Fy(Vx, Vy, X, Y, t);

Где V - начальная скорость точки, fi - угол наклона вектора скорости к оси Х.

3. Задаем временной шаг dt и разбиваем весь временной интервал на N участков. При равномерной разбивке приращение времени определяется по формуле:

dt:= (t[N]-t)/(N-1); Здесь (t[N] - t) - время движения точки.

Выбор величины dt определяется необходимой точностью расчета, возможностями вычислительной техники, и может уточняться при решении задачи.

4.Вычисляем массивы скорости, ускорения и координат точки:

For i:= 2 to N do begin

Vx[i]:= Vx + Ax*dt;

Vy[i]:= Vy + Ay*dt;

X[i]:= X + 0.5*(Vx + Vx[i])*dt;

Y[i]:= Y + 0.5*(Vy + Vy[i])*dt;

Ax[i]:= Fx(Vx[i], Vy[i], X[i], Y[i], t[i]);

Ay[i]:= Fy(Vx[i], Vy[i], X[i], Y[i], t[i]);

{ уточняем скорость точки в расчетной точке }

VX[i]:= VX + 0.5*(Ax + Ax[i])*dt;

VY[i]:= VY + 0.5*(Ay + Ay[i])*dt;

Для уменьшения погрешностей расчетной схемы, скорость и ускорения на участке интерполируются средними значениями.

5. Строим траекторию движения точки . Здесь удобно использовать процедуры из библиотеки построения графиков GR_F. Следует определить расчетную область и область рисования траектории на экране. Траектория на экране рисуется процедурой: PutPixel_G(X[i], Y[i], N);

Для тестирования работы алгоритма рассмотрим задачу расчета траектории точки, движущегося из точки с координатами X, Y с начальной скоростью Vx, Vy под действием сил, вызывающих ускорение точки Ax, Ay. Следуя пунктам 1. . 5 приведенного выше алгоритма необходимо рассчитать траекторию движения точки и сравнить с траекторией точки, описанной аналитической зависимостью X(t), Y(t).

Практическое задание N 2. 22


N X 1 Y 1 Vx 1 Vy 1 Axi Ayi X(t) Y(t)


1 0 0 0 b 2*a -y a*t 2 b*sin(t)

2 0 0 a b 0 -y a*t b*sin(t)

3 1 0 1 1 -2*y 2*x e t * cos(t) e t *sin(t)

4 a 0 0 0 -x x*b/a a* cos(t) b*(1-cos(t))

5 a b 0 0 -4*x y a* cos(2*t) b*cos(t)

6 0 0 0 b 2*a 0 a*t 2 b*t

7 2*a 0 0 a x 0 a*(e t + e -t) a*t

8 0 b a 0 -x -y a* sin(t) b*cos(t)

Y V F, * V 0 g fi 0 X

Рассмотрим задачу расчета траектории снаряда, движущегося с начальной скоростью "V 0 " под углом "fi" к горизонту с учетом сил сопротивления воздуха, пропорциональных скорости снаряда. Проекции ускорений определим в виде функций:

FUNCTION Fx(Vx, kc: real): real; begin Fx:= - kc*Vx end;

FUNCTION Fy(Vy, kc: real): real; begin Fy:= - kc*Vy - g end;

Где kc - коэффициент сопротивления воздуха,

g = 9. 81, м/с - ускорение свободного падения у поверхности Земли.

Поскольку время подлета снаряда к цели неизвестно, то параметр "dt" выбирается приближенно, например, исходя из максимального времени полета снаряда над горизонтальной поверхностью без учета сопротивления воздуха: tмах= 2*V*sin(fi)/g. Для N = 500, dt = t/500. При решении конкретных задач процесс расчета прекращается при достижении снарядом цели, либо при ограничениях по статическим координатам, например:

REPEAT i:=i+1;

{операторы расчета массивов скорости, ускорения и координат точки }

Until (cc = GetPixel_G(X[i], Y[i])) or (Y[i] < 0) or (i = N);

Здесь cc - цвет пикселов цели, Y[i] < 0 - ограничение по горизонтальной поверхности, i = N - ограничение по размеру массива. В случае преждевременного завершения полета снаряда необходимо увеличить dt или параметр N.

Практическое задание N 2. 23

1. Рассчитать разностным моделированием и по аналитической зависимости траектории полета снаряда без учета сопротивления воздуха. Построить траектории полета снаряда. Начальная скорость V 0 =1000, м/с, угол fi=450. Аналитическая зависимость имеет вид:

X = V 0 *t*cos(fi); Y = V 0 *t*sin(fi) - g*t 2 /2;

2. Рассчитать разностным моделированием и по аналитической зависимости траектории полета снаряда с учетом сопротивления воздуха, пропорциональным скорости снаряда. Построить траектории полета снаряда. Начальная скорость V 0 =3000, м/с, угол fi = 45 0 . Коэффициент сопротивления воздуха kc = 0. 01,с -1 .

Аналитическая зависимость имеет вид:

X=V 0 *cos(fi)*(1-e (-kc*t))/kc; Y=(V 0 *sin(fi)+g/kc)*(1-e (-kc*t))/kc-g*t/kc;

3. Рассчитать разностным моделированием траектории полета снаряда с учетом сопротивления воздуха, пропорциональным квадрату скорости снаряда. Коэффициент сопротивления воздуха kc 1 = kc 2 . Построить совместно траектории полета снаряда для п. 1, 2, 3. Начальная скорость V 0 = 3000, м/с, угол fi = 45 0 .

4. Составить программу поражения неподвижной цели при kc 1 = kc 2 . Изменяя в цикле угол fi на небольшую величину, определить в программе угол при котором будет поражена цель - небольшой прямоугольник с координатами вершин (x1, y1) и (x2, y2). Построить все траектории полета снаряда.

Примечание к п. 1. . 4: Выводить на экран исходные данные: V 0 , fi, kc, а также наибольшую высоту и дальность полета снаряда.

Рассмотрим задачу расчета траектории космического тела , в поле тяготения планеты без учета сил сопротивления. В начальный момент времени тело движется на высоте "Н" со скоростью "V 0 ", направленной по касательной к окружности радиуса R 0 . Поскольку движение спутника вокруг планеты достаточно продолжительно, то не целесообразно запоминать в оперативной памяти все параметры (координаты, скорости и ускорения) в каждый момент времени. Обычно эти параметры, записываются в файл на диск при вычислениях через некоторые моменты времени, а траекторию строят сразу, либо запуская отдельную программу, считывающую данные из файла. Расчетная область задается исходя из оценочных расчетов. Для спутника, движущегося вокруг Земли, можно принять:

Xmin= Ymin= -Kv*R 0 , Xmax= Ymax= Kv*R 0 ,

Здесь R 0 = (Rz+H), Rz=6. 37*10 6 , м. - радиус Земли.

Kv=1. 5 при V 0 <= W 1 ; Kv=10 при W 1 < V 0 < W 2 ; Kv=20 при V >= V 2 .

W 1 = Rz*Ö(g/R 0) - первая космическая скорость,

W 2 = Ö2* W 1 - вторая космическая скорость.

Параметр "dt" можно определить приближенно по формуле: dt=T/N,

где T= 6. 28*Rz/W 1 - время оборота спутника вокруг Земли, N=300.

Расстояние от спутника до центра планеты определяется через координаты:

function R(x, y: double): double; begin R:= sqrt(x*x + y*y) end;

Проекции ускорений определим в виде функции:

function FA(x,r,kz: double):double; begin FA:= -kz*x/(r*r*r) end;

Здесь kz = 4. E+14 для Земли (в системе СИ).

Пусть в начальный момент времени известны координаты спутника:

x 1 = R 0 ; y 1 = 0; r 1 = R(x 1 , y 1);

скорость: Vx 1 = 0; Vy 1 = V 0 ;

и ускорение: Ax 1 = FA(X 1 , r 1 , kz); Ay 1 = FA(Y 1 , r 1 , kz);

Отметим, что скорость в начальный момент времени направлена по касательной к окружности радиуса r 1 .

Для записи алгоритма расчета траектории необходимо знание параметров в двух соседних точках, например, в точке "1" - для предшествующего момента времени и в точке "2" - для расчетного момента времени. Расчет производим в цикле с одновременным выводом траектории движения спутника на экран до тех пор пока выполняется ограничение по радиусу траектории или не нажата любая клавиша.

While (r1< Xmax) or (r1> Rz) or (not keyPressed) do begin

Vx2:= Vx1 + Ax1*dt; Vy2:= Vy1 + Ay1*dt;

X2:= X1 + 0.5*(Vx1 + Vx2)*dt;

Y2:= Y1 + 0.5*(Vy1 + Vy2)*dt; r2:= R(x2, y2);

Ax2:=FA(X2, r2, kz);

Ay2:=FA(Y2, r2, kz);

Vx2:= Vx1 + 0.5*(Ax1 + Ax2)*dt; { уточняем скорость }

Vy2:= Vy1 + 0.5*(Ay1 + Ay2)*dt;

{ Переопределяем значения параметров в точке }

x1:= x2; y1:= y2; r1:= r2;

Vx1:= Vx2; Vy1:= Vy2; Ax1:= Ax2; Ay1:= Ay2

PutPixel_G(x1,y1,c); { Строим траекторию движения точки, c - цвет точки }

Практическое задание N 2. 24

r = P/(1 + e*cos(fi));

где e = P/R 0 - 1; P = (V 0 * R 0 /Rz) 2 /g ; 0 <= fi = 2*Pi.

В начальный момент времени известны координаты спутника: x 1 = R 0 ; y 1 = 0;

и скорость: Vx 1 = 0; Vy 1 = V 0 ; Рассмотреть случаи:

1_1. Начальная скорость V 0 <= W 1 , высота H = 300000, м.

1_2. Начальная скорость W 1 <= V 0 < W 2 , высота H = 400000, м.

1_2. Начальная скорость V 0 >= W 2 , высота H = 500000, м.

Примечание: Построить траектории полета спутника. Через равные промежутки времени выводить на экран время полета спутника, скорость и высоту.


1) V 0 Rz Rz 2) Rz V 0 Rz


1) 20 *Rz 2) 20 *Rz


Рассмотрим задачу расчета траектории точки переменной массы , движущегося под действием реактивной тяги. Движение точки в этом случае описывается уравнением Мещерского:

A = (U/M)*(dM/dt) + F/M

Где A - ускорение точки, M - масса точки.

U - скорость реактивной струи относительно точки,

F - результирующая внешних сил, действующих на точку,

Учитывая, что F = kz*M/r 2 - сила притяжения направлена к центру Земли, а P = U*(dM/dt) - реактивная сила двигателя (тяга) направлена по касательной к траектории движения, определяем проекции ускорения на оси координат:

Ax = P*Vx/(M*V) - kz*x/(r 3); Ay = P*Vy/(M*V) - kz*y/(r 3);

Где V = Ö(Vx 2 + Vy 2) - скорость точки,

r = Ö(x 2 + y 2) - расстояние до центра Земли,

Vx , Vy - проекции скорости точки на оси координат, x, y - координаты точки.

Полагая расход топливаz = dM/dt постоянным, массу точки можно определить по формуле: M = M 0 - z*t; при t < Tk ,

где M 0 - начальная масса точки, Tk - время работы двигателя.

Практическое задание N 2. 25

1. Построить десять траекторий полета баллистической ракеты, рассчитанных разностным моделированием. Начальная скорость V 0 =1,м/с, тяга двигателя P=2. 5Е6,н, стартовая масса M 0 = 1. 5Е5, кг, расход топлива z= 700, кг/с, время работы двигателя Tk = 200, с.

2. Построить траектории полета двухступенчатой баллистической ракеты, рассчитанные разностным моделированием. Начальная скорость V 0 = 1,м/с, стартовая масса M 0 = 3Е5, кг, для первой ступени: тяга P 1 =5Е6, н, расход топлива z 1 = 1700, кг/с, время работы двигателя Tk 1 = 130, с. Для второй ступени: тяга P 2 = 1. 1Е6, н, расход топлива z 2 = 300, кг/с, время работы двигателя Tk 2 = 230, с.

Примечание к п. 1, 2: сопротивление воздуха и вращение Земли не учитывать. Угол запуска ракеты к горизонту = 90 0 -N*0. 002 0 , где N= 1, 2, 3, ..., 10. Во время работы двигателя dt=0. 05, c, затем dt=0. 5, c.

3. Построить траекторию полета спутника Земли при включении двигателя, рассчитанную разностным моделированием. Начальные условия на высоте H=400000 м принять следующие: скорость V 0 =W 1 и направлена по касательной к окружности, M 0 =11000, кг, тяга двигателя P=4Е5, н, расход топлива z=100, кг/с, время работы двигателя Tk = 70, с. Рассчитать скорость спутника при работе двигателя по формуле Циолковского: V = V 0 + U*ln(M 0 /M) , где U = P/z .

Через каждые 10 секунд выводить на экран время полета спутника и скорость.

Рассмотрим задачу расчета траектории точки, прикрепленной к упругой нити , и движущейся с начальной скоростью "V 1 " под углом "fi" к оси "x" из точки с координатами (x 1 , y 1), без учета сил сопротивления воздуха. Эта задача моделирует известную игрушку - мяч, привязанный на резинке.

Пусть точка имеет массу "M", длина нити "L". Полагаем, что нить невесома и абсолютно упруга. Коэффициент упругости "Kn".

Оси координат проведем через точку закрепления нити вверх и влево. Расчетную область ограничим: X_min = Y_min = -Lm, X_max = Y_max = Lm,

где Lm = abs(V 1 * Ö(M/Kn)) + Ö(x12 + y12) + L + 2*M*g/Kn.

Y V 1 x,y 0 X

Период свободных колебаний груза,

подвешенного на упругой нити:

T = 6, 28* Ö(M/Kn). Примем dt = T/300.

Проекции ускорения определяются как дискретная функция расстояния " r " от начала координат до точки закрепления нити: если r <= L, то ускорение от сил упругости равно нулю, в остальных случаях:

Ax = -x*Ky*dr/(r*M);

Ay = -y*Ky*dr/(r*M) - 9.81; где dr = (r-L) > 0.

Проекцию ускорения на ось “Х” от сил упругости, запишем в виде функции:

FUNCTION FA(x, r, L, Kn, M: double): double;

begin if (r-L)>0 then FA:= -x*Kn*(r-L)/(r*M) else FA:= 0 end;

Аналогичная функция составляется для проекции ускорения на ось “У”. Методика расчета соответствует приведенной для движения спутника в поле тяготения планеты.

Практическое задание N 2. 26

1. Построить траекторию движения мяча, подвешенного на упругой нити в вязкой среде, рассчитанную разностным моделированием. Сопротивление среды пропорционально скорости движения мяча: kc=0. 01, с -1 . Нить закреплена в центре квадрата со стороной 2*Lm, длина нити L=1, м, коэффициент упругости Kn=5, н/м. Масса мяча M=0. 2, кг. Мяч начинает движение из точки с координатами x 1 =-0. 5*L, y 1 =0, со скоростью V 1 =10, м/с, под углом 45 0 .

2. Построить траекторию движения мяча, подвешенного на упругой нити в квадратной коробке, рассчитанную разностным моделированием, с учетом уменьшения нормальной составляющей скорости на 20% при отражении мяча от стенки. Сопротивление среды пропорционально скорости движения мяча: kc=0. 05, с -1 . Нить длиной L=1, м, закреплена в центре квадрата со стороной a=1. 5*L. Коэффициент упругости Kn=5, н/м, масса мяча M=0. 1, кг. Мяч начинает движение из точки с координатами x 1 =-L, y 1 =0, со скоростью V 1 x=1, м/с, V 1 y=5, м/с.

2. 4. Моделирование многовариантных задач с использованием графов




Рассмотрим "классический" пример многовариантной задачи. Пусть пункты A и B связаны между собой дорогами, могущими проходить также через пункты 1, 2, 3,..., N. В общем случае каждый пункт связан дорогами со всеми остальными. В частном случае некоторые связи (дороги) отсутствуют. Схематически эти пункты и связи можно изобразить в виде графа.

Графом называется совокупность узлов (пункты A, B, 1, 2, . . . , N) и связывающих их ребер (дорог). Маршрутом движения называется последовательность связанных ребрами узлов. В дальнейшем будем рассматривать те маршруты движения, которые всегда начинаются из пункта A и заканчиваются в пункте B. Причем пункты A и B на маршруте повторяться не могут. Например: А-1-4-В .

Ставится задача составить маршруты при заданных ограничениях (фильтрах), либо найти оптимальный по некоторым параметрам маршрут и т. д. Например, известна стоимость проезда по каждой из дорог. Необходимо найти маршрут с наименьшей стоимостью проезда, либо найти все маршруты со стоимостью не превышающей определенную величину и т. д.

Пусть узел A имеет номер "0", а узел B - номер "N+1". Рассмотрим общий случай: каждый пункт связан со всеми остальными. Обозначим M - число промежуточных узлов на маршруте.

При М = 0 маршрут может проходить только из узла "0" в узел "N+ 1".

При М = 1 маршрут проходит через один из узлов: j1= 1, либо j1= 2, .., либо j1= N.

При М = 2 маршрут проходит через два узла, причем первый из них может иметь номер: j1=1, либо j1=2, ... либо j1=N, а второй - номер: j2=1, либо j2=2, ... либо j2=N, т. е. возможно N 2 маршрутов. Графически все маршруты можно представить в виде:

A M=1 A M=2


1 . . . j1 . . . N


1 2 3 ... j1 ... N 1 2 3 ... j2 . N 1 2 3 ... j2 ... N 1 2 3 ... j2 .. N


Таким образом, число маршрутов равно N M и время перебора маршрутов при больших значениях N и M очень быстро растет.

При постановке задачи нахождения маршрутов указывается значение M - наименьшее число узлов на маршруте, M1 - наибольшее число узлов на маршруте. Причем 1<=M<=M1. Например, пусть на графе имеется три узла N=3 и необходимо составить маршруты, проходящие через два узла, т. е. M=2, M1=2. Тогда в общем случае имеются маршруты:

0-1-1-4; 0-2-1-4; 0-3-1-4; односторонняя связь

0-1-2-4; 0-2-2-4; 0-3-2-4; 1 2 3

0-1-3-4; 0-2-3-4; 0-3-3-4; двусторонняя связь

Постановка задачи нахождения маршрутов включает определение матрицы коэффициентов aij, характеризующих связи между узлами i и j. Связь узла A задается коэффициентами a 0 j, узла В - коэффициентами ai N+ 1 . Матрица имеет вид:

a 11 a 12 a 13 ... a 1N Если aij = aji = 0, то связь

a 21 a 22 a 23 ... a 2N между узлами i и j отсутствует.

a 31 a 32 a 33 ... a 3N Если aij=0 и aji<>0, то связь

........................... . между узлами i и j односторонняя.

a N1 a N2 a N3 ... a NN Если aij<>0 и aji<>0, то связь

между узлами i и j двусторонняя.

Если aij = aji при i =1, 2, . . , N; j = 1, 2, . . , N, то матрица симметричная.

Если aij = 0 при j =1, 2, . . , N; i > j, то матрица треугольная.

Значение aij может содержать значение ребра, связывающего узлы i и j (например, стоимость проезда), либо значение, содержащееся в узле i или j, либо любое значение, указывающее на существование связи между узлами i и j.

Введем линейный массив "Y", коэффициенты которого обозначают номера узлов графа через которые проходит маршрут, а индексы показывают номер пункта по порядку следования на маршруте. Операторы по перебору маршрутов имеют вид:

Y:=0; {номер узла "А" графа}

repeat {цикл по числу узлов на маршруте}

for j:= 1 to M do Y[j]:=1; {начальные номера узлов на маршруте}

Y:=N+1; {номер узла "B" графа}

repeat {цикл по перебору номеров узлов на маршруте}

for j:=1 to M+1 do if a,y[j]]=0 then goto METKA; {проверка}

{****** здесь ставятся операторы фильтра ************}

{****** . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ************}

for j:=0 to M+1 do write("-", Y[j]); writeln; {вывод маршрута}

METKA: Y:=Y+1; {изменение номера узла первого пункта на маршруте}

for j:=1 to M-1 do {определяем номера узлов на маршруте}

if Y[j]>N then begin Y[j]:=1; Y:=Y+1 end else Break;

until Y[M]=N+1;

until M>M1;

В начале программы задается возможный маршрут 0-1-1-1-. . . -1-N+1 для заданного значения M>0. Проверяется наличие связей и ставятся фильтры для определения маршрута. Затем увеличивается номер узла первого пункта по порядку следования на маршруте: 0-2-1-1-. . . -1-N+1 и т. д. до 0-N-1-1-. . . -1-N+1. При превышении номера узла значения N, номер узла сбрасывается до единицы, а номер следующего узла увеличивается на единицу: 0-1-2-1-. . . -1-N+1 и снова увеличивается номер узла первого пункта до значения N: 0-N-2-1-. . . -1-N+1 и далее сбрасывается до единицы с увеличением номера следующего узла: 0-1-3-1-. . . -1-N+1. После (N-1)-го сброса и увеличения значения узла первого пункта до N получим маршрут: 0-N-N-1-. . . -1-N+1 и далее: 0-1-1-2-. . . -1-N+1. Таким образом, происходит перебор всех возможных маршрутов до 0-N-N-N-. . . -N-N+1. После этого рассматриваются маршруты для M=M+1 включая M=M1. Отметим, что при необходимости маршрут 0-N+1 для M=0 нужно рассмотреть отдельно.

При решении конкретных задач необходимо определить значение коэффициентов aij матрицы связи и установить необходимые фильтры.

Рассмотрим задачуопределения стоимости маршрутов из A в B .

1.) Зададим стоимость проезда из узла i в узел j:

for i:=0 to N+1 do for j:=i to N+1 do a:=Random(X); {X-дано}

for i:=0 to N+1 do a:=0; { движение внутри узла запрещено}

for i:=0 to N+1 do for j:=i to N+1 do a:=a; {связи }

{двусторонние и равнозначные}

2). Матрицу связей можно вывести на экран для проверки. При выводе маршрута на экран или в файл можно выводить также значение стоимости маршрута.

S:=0; for m:=1 to M1+1 do S:=S+a,y[m]]; {стоимость маршрута}

1 2 3 4 5 6 7 8 9

Рассмотрим задачу расстановки мин на прямоугольном поле размером Nx*Ny. При этом M=M1=N=Nx*Ny и все узлы должны быть пройдены без повторений. Расстановка начинается из узла с заданным номером NH и может закончиться в узлах на верхней границе.

1) Определим матрицу связей:

for i:=0 to N+1 do for j:=1 to N+1 do a:=0;

for i:=1 to N-1 do begin a:=1; a:=1 end; {связи по гориз}

for j:=1 to Ny-1 do begin k:=Nx*j; a:=0; a:=0 end;

for i:=1 to Nx do for j:=1 to Ny-1 do {связи по вертикали}

begin k:=Nx*(j-1)+i; a:=1; a:=1 end;

a:=2; { NH - узел связи c узлом 0}

for i:=1 to Nx do a:=3; { 1, . . , Nx - узлы связи c узлом N+1}

2). Установим фильтр, запрещающий возврат в узел на маршруте:

for k:=1 to M do c]:=0; for k:=1 to M do

begin c]:=c]+1; if c]=1 then goto METKA end;

Здесь производится суммирование повторяющихся номеров узлов на маршруте. При совпадении номера узла значение счетчика c]=1 -маршрут не рассматривается.

Рассмотрим задачу загрузки N - видов коробок в машину. Задается число коробок каждого вида: Ki, их вес Mi и объем Vi, где i=1, 2, . . , N. Ограничения могут быть по общему весу и объему. Число узлов графа равно N. Число узлов на маршруте M=1, М1=K 1 +K 2 +. . . +K N . Интервал М-М1 можно уменьшить просчитав наибольшее допустимое по весу и объему число коробок KMi каждого вида загружаемых в машину (KMi<=Ki). Тогда М = min(KMi), а М1 = max(KMi). Поскольку порядок загрузки не имеет значения, то все связи односторонние. 0

1 2 ... k ... N N+1

1) Определим матрицу связей:

for i:=0 to N+1 do for j:=i to N+1 do a:=0; {нижний треугольник}

for i:=0 to N+1 do for j:=i to N+1 do a:=1; {верхний треугольник}

2) Определение числа коробок каждого вида аналогично суммированию повторяющихся номеров узлов на маршруте.

Практическое задание N 2. 27

1) Вывести в файл стоимость маршрутов без повторяющихся узлов при N=4, M=3, M1=4, Х=9. Определить номера маршрутов с наименьшей и наибольшей стоимостью

для разных значений М.

2) Вывести символами псевдографики в текстовом режиме маршруты движения в прямоугольнике 2х4, либо 4х2. Начало движения при NH=8.

3) Вывести общий вес и число коробок каждого из 3-х видов, загружаемых в машину. Задать веса функцией Random(50)+50; Установить фильтр по общему весу G<900. Общее число коробок: M=10, M1=12.

Современный этап развития науки характеризуется усилением и углублением взаимодействия отдельных её отраслей, формированием новых форм и средств исследования, в т.ч. математизацией и компьютеризацией познавательного процесса. Распространение понятий и принципов математики в различные сферы научного познания оказывает существенное влияние, как на эффективность специальных исследований, так и на развитие самой математики.

В процессе математизации естественных, общественных, технических наук и её углубления происходит взаимодействие между методами математики и методами тех отраслей наук, которые подвергаются математизации, усиливается взаимодействие и взаимосвязь между математикой и конкретными науками, формируются новые интегративные направления в науке.

Говоря о применении математики в той или иной сфере науки, следует иметь в виду, что процесс математизации знания будет идти скорее тогда, когда объект исследования состоит из простых и однородных элементов. Если объект обладает сложной структурной, то применение математики затрудняется.

В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на фоне математизации, находит свое отражение и в динамике понятийного аппарата.

Воздействие научно-технической революции на прогресс математики чаще всего происходит опосредствованными и сложным путем. Обычно запросы техники, производства и экономики выдвигают различные проблемы перед наукам, которые стоят ближе к практике. Решая свои проблемы, естественные и технические науки ставят соответствующие задачи перед математикой, стимулируя ее дальнейшее развитие.

Говоря о современном этапе математизации научного познания, следует отметить повышение эвристической и интегративной роли математики в познании, а также влияние научно-технической революции на развитие современной математики, ее понятий и методов.

В процессе взаимодействия современных наук единство абстрактного и конкретного проявляется как в синтезе математических теорий в структурах научного знания, так и в синтезе самих математических теорий.

Развитие техники, производственной деятельности людей выдвигает исследование новых, неизвестных ранее процессов и явлений природы, которое зачастую немыслимо без совместных усилий различных отраслей науки. Если отдельно области современного научного знания не способны изучить эти процессы природы в отдельности, то эту задачу можно осуществить на основе интеграции наук, изучающих различные формы движения материи. Благодаря трудам ученых, работающих в различных областях науки, комплексные проблемы находят свое объяснение. В свою очередь, это области науки обогащаются новым содержанием, выдвигаются новые научные проблемы. В таком процессе взаимосвязи и взаимовлияния научных областей обогащается и математическое знание, начинают осваиваться новые количественные отношения, закономерности.

Синтетический характер математики состоит в том, что она обладает предметной общностью, т.е. абстрагируясь от количественных свойств социальных, природных и технических объектов, изучает специфические закономерности, присущие этим областям.

Другим важнейшим качеством математики является ее эффективность, которая достигается на основе восхождения к абстракциям высокого уровня. Сущность математики определяется соотношением чистой и прикладной математики. Прикладная математика ориентирована на решение различных конкретных проблем реального мира. Тем самым, в математическом творчестве различают три этапа: во-первых, движение от реальной действительности к абстрактным структурам, во-вторых, создание абстрактных понятий и математических теорий, в-третьих, непосредственное применение математики.

Современный этап математизации науки характеризуется широким использованием метода математического моделирования. Математика разрабатывает модели и совершенствует методы их применения. Создание математических моделей – первый шаг в математико-исследовательском направлении. В последующем модель изучается посредством особых математических методов.

Математика имеет множество конкретных методов. Универсальность математики связана с двумя моментами. Во-первых, единством языка математических моделей, вытекающих их качественно различных задач (единство языка составляет внешнее единство математики), во-вторых, наличием общих понятий, принципов и методов, применяемых к бесчисленным конкретным математическим моделям.

В XVII-XIX веках благодаря применению математических понятий в физике были получены первые результаты в области гидродинамики, разработаны теории, связанные с распространением теплоты, явлениями магнетизма, электростатики и электродинамики. А. Пуанкаре создал теорию диффузии на основе теории вероятности, Дж.Масквелл – электромагнитную теорию на основе дифференциального исчисления, идея случайного процесса сыграла существенную роль в изучении биологами динамики популяции и разработке основ математической экологии.

Современная физика является одной из наиболее математизированных областей естествознания. Движение математической формализации к физическим теориям является одним из важнейших признаков развития физического познания. Это можно видеть в закономерностях процесса познания, в создании теории относительности, квантовой механики, квантовой электромеханики, в развитии современной теории элементарных частиц.

Говоря о синтезе научного знания, необходимо отметить и роль математической логики в процессе создания понятий нового типа. Математическая логика по своему предмету является логикой, а по своему методу – математикой. Она оказывает существенное влияние как на создание и развитие обобщающих идей, понятий, так и на развитие познавательных функций других наук. Математическая логика сыграла важнейшую роль в создании алгоритмов и рекурсивных функций. Наряду с этим, трудно без математической логики представить себе создание и развитие электроники, кибернетики, структурного языкознания.

Математическая логика сыграла важнейшую роль в процессе возникновения таких общенаучных понятий, как алгоритм, информация, обратная связь, система, множество, функция и др.

Математизация науки есть в сущности двуединый процесс, включающий рост и развитие как конкретных наук, так и самой математики. При этом взаимодействие между конкретными науками и математикой носит диалектической характер. С одной стороны, решение проблем конкретных наук выдвигает множество задач, имеющих чисто математический характер, с другой стороны, математический аппарат дает возможность точнее сформулировать законы и теории конкретных наук.

Другая причина математизации современной науки связана с решением крупных научно-технических проблем. Это, в свою очередь, требует применения современной вычислительной техники, что нельзя представить без математического обеспечения. Можно отметить, что на стыке математики и других конкретных наук возникли дисциплины «пограничного» характера, такие как математическая психология, математическая социология и т.д. В методах исследования синтетических наук, таких как кибернетика, информатика, бионика и др. математика выполняет определяющую роль.

Возрастание взаимосвязи естественных, общественных и технических наук и процесс их математизации представляет собой ту основу, на которой формируются и приобретают общенаучный статус такие понятия, как функция, система, структура, модель, элемент, множество, вероятность, оптимальность, дифференциал, интеграл и др.

Моделирование – метод научного познания, основанный на изучении реальных объектов посредством изучения моделей этих объектов, т.е. посредством изучения более доступных для исследования и (или) вмешательства объектов-заместителей естественного или искусственного происхождения, обладающих свойствами реальных объектов (аналоги объектов, подобные реальным в структурном или функциональном плане).

При мысленном (образном) моделировании свойства реального объекта изучаются через мысленно-наглядные представления о нем (с этого варианта моделирования начинается, вероятно, любое первое изучение интересующего объекта).

При физическом (предметном) моделировании модель воспроизводит определенные геометрические, физические, функциональные свойства реального объекта, при этом являясь более доступной или удобной для исследования благодаря отличию от реального объекта в некотором не существенном для данного исследования плане (например, устойчивость небоскреба или моста, в некотором приближении, можно изучать на сильно уменьшенной физической модели – рискованно, дорого и вовсе не обязательно «крушить» реальные объекты).

При знаковом моделировании модель, являющаяся схемой, графиком, математической формулой, воспроизводит поведение определенной интересующей характеристики реального объекта благодаря тому, что существует и известна математическая зависимость этой характеристики от прочих параметров системы (построить приемлемые физические модели изменяющегося земного климата или электрона, излучающего электромагнитную волну при межуровневом переходе – задача безнадежная; да и устойчивость небоскреба, вероятно, неплохо заранее просчитать поточнее).

По степени адекватности модели прототипу их принято подразделять на эвристические (приблизительно соответствующие прототипу по изучаемому поведению в целом, но не позволяющие дать ответ на вопрос, насколько интенсивно должен происходить тот или иной процесс в реальности), качественные (отражающие принципиальные свойства реального объекта и качественно соответствующие ему по характеру поведения) и количественные (достаточно точно соответствующие реальному объекту, так что численные значения исследуемых параметров, являющиеся результатом исследования модели, близки к значениям тех же параметров в реальности).

Свойства любой модели не должны, да и не могут, точно и полностью соответствовать абсолютно всем свойствам соответствующего реального объекта в любых ситуациях. В математических моделях любой дополнительный параметр может привести к существенному усложнению решения соответствующей системы уравнений, при численном моделировании непропорционально вырастает время обработки задачи компьютером, нарастает ошибка счета. Таким образом, при моделировании является существенным вопрос об оптимальной, для данного конкретного исследования, степени соответствия модели оригиналу по вариантам поведения исследуемой системы, по связям с другими объектами и по внутренним связям исследуемой системы; в зависимости от вопроса, на который хочет ответить исследователь, одна и та же модель одного и того же реального объекта может быть признана адекватной или абсолютно не отражающей реальность.

Модель - это система, исследование которой служит средством для получения информации о другой системе ”. Модели классифицируют исходя из наиболее существенных признаков объектов. Понятие “модель” возникло в процессе опытного изучения мира. Первыми, кто применил модели на практике, были строители.

Способы создания моделей различны : физический, математический, физико-математический.

Физическое моделирование характеризуется тем, что исследования проводятся на установках, обладающих физическим подобием, т. е. сохраняющих полностью или хотя бы в основном природу явлений.

Более широкими возможностями обладает математическое моделирование . Это способ исследования различных процессов путем изучения явлений, имеющих различное физическое содержание, но описываемых одинаковыми математическими моделями. Математическое моделирование имеет огромное преимущество перед физическим, поскольку нет необходимости сохранять размеры модели. Это дает существенный выигрыш во времени и стоимости исследования.

Моделирование широко применяется в технике. Это и исследование гидроэнергетических объектов и космических ракет, специальные модели для наладки приборов управления и тренировки персонала, управляющего различными сложными объектами. Многообразно применение моделирования в военной технике. В последнее время особое значение пробрело моделирование биологических и физиологических процессов.

Общеизвестна роль моделирования общественно-исторических процессов. Применение моделей позволяет проводить контролируемые эксперименты в ситуациях, где экспериментирование на реальных объектах является практически невозможным или по каким-то причинам (экономическим, нравственным и т. д.) нецелесообразным.

Большое значение на современном этапе развития науки и техники приобретают задачи предсказания, управления, распознавания. Метод эволюционного моделирования возник при попытке воспроизведения на ЭВМ поведения человека. Эволюционное моделирование было предложено как альтернатива эвристическому и бионическому подходу, моделировавшему мозг человека в нейронных структурах и сетях. При этом основная идея звучала так: заменить процесс моделирования интеллекта моделированием процесса его эволюции.

Таким образом, моделирование превращается в один из универсальных методов познания в сочетании с ЭВМ. Особо хочется подчеркнуть роль моделирования - бесконечную последовательность уточненных представлений о природе.

В общем случае процесс моделирования состоит из следующих этапов:

1. Постановка задачи и определение свойств оригинала, подлежащих исследованию.

2. Констатация затруднительности или невозможности исследования оригинала в натуре.

3. Выбор модели, достаточно хорошо фиксирующей существенные свойства оригинала и легко поддающейся исследованию.

4. Исследование модели в соответствии с поставленной задачей.

5. Перенос результатов исследования модели на оригинал.

6. Проверка этих результатов.

Основными задачами являются: во-первых, выбор моделей и, во-вторых, перенос результатов исследования моделей на оригинал.

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.



Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Задача реализации заключается в переходе от внешнего описания системы к ее внутреннему описанию. Задача реализации представляет собой одну из важнейших задач в исследовании систем и, по существу, отражает абстрактную формулировку научного подхода к построению математической модели. В такой постановке задача моделирования заключается в построении множества состояний и вход-выходного отображения исследуемой системы на основе экспериментальных данных. В настоящее время задача реализации решена в общем виде для систем, у которых отображение вход-выход линейно. Для нелинейных систем общего решения задачи реализации пока не найдено.

Физическое и математическое моделирование

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.

Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Поэты знают – все похоже на все. На этом положении базируется творчество метафор:

В саду горит костер рябины красной,

Но никого не может он согреть.

На этом же положении базируется моделирование. Моделирование – это построение и исследование моделей. В свою очередь моделью называется некоторая система, исследуя которую получают информацию о другой системе.

С первого взгляда это кажется нонсенсом. Можно ли, разглядывая один предмет, получить представление о другом предмете. Где то море, а где та дача?

Между тем, чтобы посмотреть на себя со стороны, мы пользуемся зеркалом. При этом свое отражение в зеркальном стекле мы отождествляем с собой. Хотя наше отражение кое в чем и отличается от оригинала. Например, правое и левое в зеркале меняется местами. Но мы почти автоматически делаем поправку на это не существенное в данном случае различие, и пользуемся зеркалом к своей пользе и вящему удобству. Все мальчики отходят от зеркала чистыми и причесанными. А девочки вообще красавицы!

Модель, метафорически выражаясь, и есть такое зеркало, приставленное к изучаемому предмету.

Создавая модель, мы решаем, какие свойства изучаемой системы для нас важны, а какие – второстепенны. Например, при исследовании крыльев летательных аппаратов в аэродинамической трубе, нам важна их форма и материал, из которого они изготовлены. Цвет же крыльев в данном случае несущественен. Хотя при расчете видимости самолета цвет его плоскостей будет, пожалуй, самой важной информацией.

Определившись с главными и не главными свойствами моделируемой системы или объекта, мы устанавливаем определенные соотношения между свойствами системы и ее модели. Например, если размер модели дома вдвое меньше размера реального дома, объем, а следовательно, вес модели будет в восемь раз меньше реального.

Затем мы начинаем исследование модели и определяем различные интересующие нас соотношения между параметрами. Например, при какой скорости воздушного потока начнутся вибрации крыла. Это – формулировка проблемы флаттера, колебаний летательного аппарата, неожиданно возникающих при определенных значениях скорости воздушного потока, обтекающего крыло. Без решения этой проблемы самолеты не смогли бы летать с высокими скоростями. Чтобы решить ее пришлось наблюдать в аэродинамической трубе разрушение большого количества моделей крыльев. Здесь мы сразу видим в чем достоинства моделирования. Мы испытываем на прочность не дорогой самолет, а дешевую модель, пересчитывая свойства модели в свойства моделируемого реального самолета. Экономия средств, а главное, летчики-испытатели не должны рисковать жизнью.

Другая область применения моделей – сопротивление материалов и строительная механика. Насколько прочной должна быть сталь для моста? Какой толщины делать несущие колонны, чтобы здание не обрушилось? Можно ли построить небоскреб из кирпича? Здесь моделью реального материала является образец, подвергаемый испытаниям на специальных испытательных стендах. Прочностные характеристики, полученные по результатам испытаний, пересчитываются в прочностные характеристики реальных деталей машин или зданий.

А при «заселении» нового здания тоже не обойтись без моделирования. Для того, чтобы оптимально расставить мебель в комнатах, никто не таскает туда-сюда тяжелые столы и громоздкие холодильники. Все предметы моделируются небольшими бумажными прямоугольничками, которые перемещаются по поверхности бумажного листа с изображенным на нем планом помещения.

Да и в медицине мы не обходимся без моделирования. Ни один человек в точности на другого не похож. Вместе с тем, у всех человеческих организмов есть достаточно сходства, как в «деталях», так и в «функциях». Медик изучает анатомию по одному скелету, а иногда даже по модели скелета, и понимает, как устроены все люди. Психолог изучает, как конкретный человек реагирует на определенные раздражители, а потом делает общие выводы касательно поведения всех людей.

Моделирование бывает двух видов – математическое и физическое. При математическом моделировании исследуются системы соотношений, описывающих процессы, протекающие в моделируемом объекте. Соотношения могут описываться уравнениями, зачастую достаточно сложными, которые выводятся на основе теоретической модели исследуемого процесса или исследуемой системы. Но математические модели могут быть также и вероятностными. В таких моделях изменения входных параметров определяют поведение выходных параметров не жестко, а с некоторой долей вероятности.

Математическая модель – это всегда компромисс между реальной сложностью исследуемой системы и простотой, требуемой для его описания. Не всегда имеются «качественные» теории, позволяющие точно рассчитать, что происходит, например, при падении напряжения в больших электросетях. Да даже поведение потока воды, спускаемой в унитазе в зависимоти от его формы – серьезная теоретическая проблема.

При физическом моделировании изучаются свойства моделей, которые по физическим свойствам сходны с оригиналами. Например, при краш-тестах автомобилей множество разбиваемых автомобилей моделирует поведение любого автомобиля, который, в конце концов, будет выпущен на дорогу.

Исследования физических моделей производится на реальных установках или испытательных стендах. Результаты испытаний переводятся в реальные результаты с помощью расчетов, основанных на специальном математическом аппарате, который называется теорией подобия. Примером испытания физических моделей являются уже описанные испытания авиационных моделей в аэродинамической трубе. Или расчет плотины гидроэлектростанции. Недостатком физического моделирования является относительная трудоемкость создания и испытания моделей и меньшая универсальность метода физического моделирования.

Но в любом случае, физическое и математическое моделирование, дополняя друг друга, позволяют изменять наш мир в желаемом направлении.