Центрального угла равна градусной. Угол. Вписанный угол

Чаще всего процесс подготовки к ЕГЭ по математике начинается с повторения основных определений, формул и теорем, в том числе и по теме «Центральный и вписанный в окружность угол». Как правило, данный раздел планиметрии изучается еще в средней школе. Неудивительно, что многие учащиеся сталкиваются с необходимостью повторения базовых понятий и теорем по теме «Центральный угол окружности». Разобравшись с алгоритмом решения подобных задач, школьники смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена.

Как легко и эффективно подготовиться к прохождению аттестационного испытания?

Занимаясь перед сдачей единого государственного экзамена, многие старшеклассники сталкиваются с проблемой поиска нужной информации по теме «Центральный и вписанный углы в окружности». Далеко не всегда школьный учебник имеется под рукой. А поиск формул в Интернете порой отнимает очень много времени.

«Прокачать» навыки и улучшить знания в таком непростом разделе геометрии, как планиметрия, вам поможет наш образовательный портал. «Школково» предлагает старшеклассникам и их преподавателям по-новому выстроить процесс подготовки к сдаче единого госэкзамена. Весь базовый материал представлен нашими специалистами в максимально доступной форме. Ознакомившись с информацией в разделе «Теоретическая справка», учащиеся узнают, какими свойствами обладает центральный угол окружности, как найти его величину и т. д.

Затем для закрепления полученных знаний и отработки навыков мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий на нахождение величины угла, вписанного в окружность, и других параметров представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.

Готовиться к ЕГЭ, практикуясь в выполнении упражнений, к примеру, на нахождение величины центрального угла и длины дуги окружности, старшеклассники могут в онлайн-режиме, находясь в любом российском регионе.

При необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и еще раз разобрать принцип его решения.

Понятие вписанного и центрально угла

Введем сначала понятие центрального угла.

Замечание 1

Отметим, что градусная мера центрального угла равна градусной мере дуги, на которую он опирается .

Введем теперь понятие вписанного угла.

Определение 2

Угол, вершина которого лежит на окружности и стороны которого пересекают эту же окружность, называется вписанным углом (рис. 2).

Рисунок 2. Вписанный угол

Теорема о вписанном угле

Теорема 1

Градусная мера вписанного угла равняется половине градусной меры дуги, на которую он опирается.

Доказательство.

Пусть нам дана окружность с центром в точке $O$. Обозначим вписанный угол $ACB$ (рис. 2). Возможны три следующих случая:

  • Луч $CO$ совпадает с какой либо стороной угла. Пусть это будет сторона $CB$ (рис. 3).

Рисунок 3.

В этом случае дуга $AB$ меньше ${180}^{{}^\circ }$, следовательно, центральный угол $AOB$ равен дуге $AB$. Так как $AO=OC=r$, то треугольник $AOC$ равнобедренный. Значит, углы при основании $CAO$ и $ACO$ равны между собой. По теореме о внешнем угле треугольника, имеем:

  • Луч $CO$ делит внутренний угол на два угла. Пусть он пересекает окружность в точке $D$ (рис. 4).

Рисунок 4.

Получаем

  • Луч $CO$ не делит внутренний угол на два угла и не совпадает ни с одной его стороной (Рис. 5).

Рисунок 5.

Рассмотрим отдельно углы $ACD$ и $DCB$. По доказанному в пункте 1, получим

Получаем

Теорема доказана.

Приведем следствия из данной теоремы.

Следствие 1: Вписанные углы, которые опираются на одну и туже дугу равны между собой.

Следствие 2: Вписанный угол, который опирается на диаметр -- прямой.

Это угол, сформированный двумя хордами , берущими начало в одной точки окружности. О вписанном угле говорят, что он опирается на дугу, заключенную между его сторонами.

Вписанный угол равен половине дуги, на которую он опирается.

Говоря другими словами, вписанный угол включает в себе столько угловых градусов, минут и секунд, сколько дуговых градусов , минут и секунд заключено в половине дуги, на которую он опирается. Для обоснования проанализируем три случая:

Первый случай:

Центр O расположен на стороне вписанного угла ABС. Прочертив радиус AO, мы получим ΔABO, в нем OA = OB (как радиусы) и, соответственно, ∠ABO = ∠BAO. По отношению к этому треугольнику , угол AOС - внешний. И значит, он равен сумме углов ABO и BAO, или равен двойному углу ABO. Значит ∠ABO равен половине центрального угла AOС. Но этот угол измеряется дугой AC. То есть, вписанный угол ABС измеряется половиной дуги AC.

Второй случай:

Центр O расположен между сторонами вписанного угла ABС.Начертив диаметр BD, мы поделим угол ABС на два угла, из которых, по установленному в первом случае, один измеряется половиной дуги AD, а другой половиной дуги СD. И соответственно угол ABС измеряется (AD+DС) /2, т.е. 1 / 2 AC.

Третий случай:

Центр O расположен вне вписанного угла ABС. Начертив диаметр BD, мы будем иметь:∠ABС = ∠ABD - ∠CBD. Но углы ABD и CBD измеряются, на основании обоснованного ранее половинами дуг AD и СD. И так как ∠ABС измеряется (AD-СD)/2, то есть половиной дуги AC.

Следствие 1. Любые , опирающиеся на одну и ту же дугу одинаковы, то есть равны между собой. Поскольку каждый из них измеряется половиной одной и той же дуги .

Следствие 2. Вписанный угол , опирающийся на диаметр - прямой угол . Поскольку каждый такой угол измеряется половиной полуокружности и, соответственно, содержит 90°.

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

ОКРУЖНОСТЬ И КРУГ. ЦИЛИНДР.

§ 76. ВПИСАННЫЕ И НЕКОТОРЫЕ ДРУГИЕ УГЛЫ.

1. Вписанный угол.

Угол, вершина которого находится на окружности, а стороны являются хордами, называется вписанным.

Угол АВС - вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (черт. 330).

Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается.

Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов, минут и секунд содержится в половине дуги, на которую он опирается.

При доказательстве этой теоремы надо рассмотреть три случая.

Первый случай. Центр круга лежит на стороне вписанного угла (черт. 331).

Пусть / АВС - вписанный угол и центр круга О лежит на стороне ВС. Требуется доказать, что он измеряется половиной дуги АС.

Соединим точку А с центром круга. Получим равнобедренный /\ AОВ, в котором
АО = ОВ, как радиусы одного и того же круга. Следовательно, / А = / В. / АОС является внешним по отношению к треугольнику АОВ, поэтому / АОС = / А + / В (§ 39, п. 2), а так как углы А и В равны, то / В составляет 1 / 2 / АОС.

Но / АОС измеряется дугой АС, следовательно, / В измеряется половиной дуги АС.

Например, если АС содержит 60° 18", то / В содержит 30°9".

Второй случай. Центр круга лежит между сторонами вписанного угла (черт. 332).

Пусть / АВD - вписанный угол. Центр круга О лежит между его сторонами. Требуется доказать, что / АВD измеряется половиной дуги АD.

Для доказательства проведём диаметр ВС. Угол АВD разбился на два угла: / 1 и / 2.

/ 1 измеряется половиной дуги АС, а / 2 измеряется половиной дуги СD, следовательно, весь / АВD измеряется 1 / 2 АС + 1 / 2 СD, т. е. половиной дуги АD.
Например, если АD содержит 124°, то / В содержит 62°.

Третий случай. Центр круга лежит вне вписанного угла (черт. 333).

Пусть / МАD - вписанный угол. Центр круга О находится вне угла. Требуется доказать, что / МАD измеряется половиной дуги МD.

Для доказательства проведём диаметр АВ. / МАD = / МАВ- / DАВ. Но / МАВ измеряется 1 / 2 МВ, а / DАВ измеряется 1 / 2 DВ. Следовательно, / МАD измеряется
1 / 2 (МВ - DВ), т. е. 1 / 2 МD.
Например, если МD содержит 48° 38"16", то / МАD содержит 24° 19" 8".

Следствия. 1. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой, так как они измеряются половиной одной и той же дуги (черт. 334, а).

2. Вписанный угол, опирающийся на диаметр,-прямой, так как он опирается на половину окружности. Половина окружности содержит 180 дуговых градусов, значит, угол, опирающийся на диаметр, содержит 90 угловых градусов (черт. 334, б).

2. Угол, образованный касательной и хордой.

Теорема. Угол, образованный касательной и хордой, измеряется половиной дуги, заключённой между его сторонами.

Пусть / САВ составлен хордой СА и касательной АВ (черт. 335). Требуется доказать, что он измеряется половиной СА. Проведём через точку С прямую СD || АВ. Вписанный / АСD измеряется половиной дуги АD, но АD = СА, так как они заключены между касательной и параллельной ей хордой. Следовательно, / DСА измеряется половиной дуги СА. Так как данный / САВ = / DСА, то и он измеряется половиной дуги СА.

Упражнения.

1. На чертеже 336 найти касательные к окружности блоков.

2. По чертежу 337, а доказать, что угол АDС измеряется полусуммой дуг АС и ВК.

3. По чертежу 337, б доказать, что угол АМВ измеряется полуразностью дуг АВ и СЕ.

4. Через точку А, лежащую внутри круга, с помощью чертёжного треугольника провести хорду так, чтобы она в точке А разделилась пополам.

5. С помощью чертёжного треугольника разделить дугу на 2, 4, 8... равных частей.

6. Описать данным радиусом окружность, проходящую через две данные точки. Сколько решений имеет задача?

7. Сколько окружностей можно провести через данную точку?