Схема лампы навигатор. Блок питания: что можно сделать из энергосберегающей лампы? Цены на люминесцентные лампы

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:



Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.
Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.


Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.


Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.



Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.


Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.


Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В одной из своих статей я рассказывал Вам, что для внутреннего освещения распределительных устройств (РУ) подстанций в основном мы применяем трубчатые и компактные люминесцентные лампы (КЛЛ).

Про их преимущества и недостатки читайте .

В этой статье я расскажу Вам, как произвести ремонт компактной люминесцентной лампы Sylvania Mini-Lynx Economy мощностью 20 (Вт) производства Китай.

Данная лампа проработала на подстанции около 1,5 лет. Если режим ее работы перевести в часы, то получится в среднем около 2000 часов, вместо 6000 часов, заявленных производителем.

Идея с ремонтом люминесцентных ламп возникла тогда, когда мне на глаза попалась очередная коробка со сгоревшими лампами, которые планировали утилизировать. Подстанций много, объем ламп большой, соответственно, и сгоревшие лампы регулярно накапливаются.

Напомню Вам, что в люминесцентных лампах содержится ртуть, поэтому выбрасывать их с бытовым мусором не допустимо.

Для начала приведу основные характеристики ремонтируемой лампы Sylvania Mini-Lynx Economy:

  • мощность 20 (Вт)
  • цоколь Е27
  • напряжение сети 220-240 (В)
  • тип лампы — 3U
  • световой поток 1100 (Лм)

Ремонт энергосберегающей лампы своими руками

С помощью плоской отвертки с широким жалом нужно аккуратно отстегнуть защелки корпуса в местах соединения двух его половинок. Для этого вставляем отвертку в паз и поворачиваем ее в ту или иную сторону, чтобы отщелкнуть первую защелку.

Как только первая защелка откроется, продолжаем вскрывать остальные по периметру корпуса.

Будьте аккуратны, иначе при разборке можно сколоть корпус лампы или, не дай Бог, разбить саму колбу, тогда придется из-за наличия в колбе паров ртути.

Компактная люминесцентная лампа состоит из трех частей:

  • 3 U-образные дуговые колбы
  • электронная плата (ЭПРА)
  • цоколь Е27

Круглая печатная плата — это и есть плата электронного пускорегулирующего устройства (ЭПРА), или другими словами электронный баласт. Рабочая частота ЭПРА составляет от 10 до 60 (кГц). В связи с этим устраняется стробоскопический эффект «моргания» (значительно уменьшается коэффициент пульсаций ламп), который присутствует у люминесцентных ламп, собранных на электромагнитных ПРА (на основе дросселя и стартера) и работающих на частоте сети 50 (Гц).

Кстати, скоро мне принесут попользоваться прибор для измерения коэффициента пульсаций. Произведем замер и сравним коэффициенты пульсаций у лампы накаливания, у люминесцентной лампы с ЭПРА и с ЭмПРА, и у светодиодной лампы.

Подписывайтесь на новости сайта, чтобы не пропустить новые статьи.

Питающие провода от цоколя очень короткие, поэтому не дергайте резко, а то можно их оторвать.

В первую очередь нужно проверить целостность нитей накаливания. В данной энергосберегающей лампе их две. Они обозначены на плате, как А1-А2 и В1-В2. Их выводы намотаны на проволочные штыри в несколько витков без применения пайки.

С помощью мультиметра проверим сопротивление каждой нити.

Нить А1-А2.

Нить накала А1-А2 имеет обрыв.

Нить В1-В2.

Вторая нить В1-В2 имеет сопротивление 9 (Ом).

В принципе, перегоревшую нить можно определить визуально по затемненным участкам стекла на колбе. Но все равно без измерения сопротивления не обойтись.

Сгоревшую нить накаливания А1-А2 можно зашунтировать резистором с номиналом, аналогичным исправной нити, т.е. порядка 9-10 (Ом). Я установлю резистор сопротивлением 10 (Ом) мощностью 1 (Вт). Этого вполне хватит.

Впаиваю резистор с обратной стороны платы на выводы А1-А2. Вот, что получилось.

Между резистором и платой нужно установить прокладку (на фото ее пока нет). Теперь нужно проверить лампу на работоспособность.

Лампа горит. Теперь можно собрать корпус и продолжать ее эксплуатировать.

При таком ремонте запуск люминесцентной лампы будет происходить с некоторым мерцанием (порядка 2-3 секунд) - подтверждение тому смотрите в видео.

Неисправности, встречающиеся при ремонте ламп

Если нити накаливания в лампе исправны, то можно переходить к поиску неисправностей в электронной плате (ЭПРА). Визуально оцениваем ее состояние на наличие механических повреждений, сколов, трещин, сгоревших элементов и т.п. Также не забываем проверить качество пайки — это же китайское изделие.

В моем примере на вид плата чистая, трещин, сколов и сгоревших элементов не наблюдается.

Вот наиболее распространенная схема ЭПРА, которая используется в большинстве компактных люминесцентных лампах (КЛЛ). У каждого производителя есть свои небольшие отличия (разброс параметров элементов схемы в зависимости от мощности лампы), но общий принцип схемы остается тот же.

Выйти из строя могут следующие элементы платы:

  • ограничительный резистор
  • диодный мост
  • сглаживающий конденсатор
  • транзисторы, резисторы и диоды
  • высоковольтный конденсатор
  • динистор

А теперь поговорим о каждом элементе подробнее.

1. Ограничительный резистор

В схеме указан предохранитель FU, но зачастую он просто отсутствует, как в моем примере.

Его роль выполняет входной ограничительный резистор. При возникновении какой-либо неисправности в лампе (ток короткого или перегруз) ток в цепи растет и резистор сгорает, тем самым разрывая цепь питания. Резистор усажен в термоусадочной трубке. Один его вывод соединен с резьбовым контактом цоколя, а второй - с платой.

Я решил проверить этот резистор — он оказался целым, а значит можно сделать вывод, что короткого замыкания в цепи не было — произошел просто обрыв нити А1-А2. Сопротивление резистора составляет 6,3 (Ом).

Если у Вас резистор «не звонится», то в любом случае нужно искать причины по которым он сгорел (см. далее по тексту). При сгоревшем резисторе лампа гореть не будет.

2. Диодный мост

Диодный мост VD1-VD4 служит для выпрямления сетевого напряжения 220 (В). Выполнен он на 4 диодах марки 1N4007 HWD.

Если диоды «пробиты», то соответственно, производим их замену. При пробое диодов ограничительный резистор, как правило, тоже сгорает, а лампа перестает гореть.

Электролитический конденсатор С1 сглаживает пульсации выпрямленного напряжения. Очень часто выходит из строя (теряет емкость и вздувается), особенно в китайских лампах, поэтому не лишним будет его проверить. При его неисправности лампа плохо включается и гудит.

На фотографии он зеленого цвета. Имеет емкость 4,7 (мкФ) напряжением 400 (В).

4. Транзисторы, резисторы и диоды

На двух транзисторах VT3 и VT4 собран высокочастотный генератор (импульсный преобразователь). В качестве транзисторов применяются высоковольтные кремниевые транзисторы серий MJE13003 и MJE13001. Для моей 20-Ваттной лампы установлено два транзистора серии MJE13003 ТО-126.

Чтобы проверить транзисторы, их нужно выпаивать из схемы, т.к. между их переходами подключены диоды, резисторы и низкоомные обмотки тороидального трансформатора, что ложно отразится при измерении мультиметром. Зачастую выходят из строя резисторы R3 и R4 в цепи базы транзисторов — их номинал около 20-22 (Ом).

5. Высоковольтный конденсатор

Если лампа сильно мерцает или светится в районе электродов, то скорее всего причиной тому является пробой высоковольтного конденсатора C5, подключенного между нитями накала. Этот конденсатор создает высоковольтный импульс для появления разряда в колбе. И если он пробит, то лампа не загорится, а в районе электродов будет наблюдаться свечение из-за разогрева спиралей (нитей накаливания). Кстати, это одна из распространенных неисправностей.

В моей лампе установлен конденсатор B472J 1200 (В). Если он вышел из строя, то его можно заменить на конденсатор с более высоким напряжением, например, 3,9 (нФ) 2000 (В).

6. Динистор

Динистор VS1 (по схеме DB3) выглядит как миниатюрный диод.

При достижении между анодом и катодом напряжения около 30 (В) он открывается. С помощью мультиметра проверить динистор не возможно, только лишь его целостность — он не должен «звониться» ни в одном направлении. Из строя выходит гораздо реже, нежели предыдущие элементы. У маломощных ламп динистор обычно отсутствует.

7. Тороидальный трансформатор

Тороидальный трансформатор Т1 имеет кольцевой магнитопровод, на котором намотаны 3 обмотки. Количество витков каждой обмотки находится в пределах от 2 до 10. Практически не выходит из строя.

Хотел бы отметить то, что лампа Sylvania имеет холодный запуск, т.к. у нее в схеме отсутствует позистор РТС (терморезистор с положительным коэффициентом).

Это значит, что при включении лампы ток подается на холодные нити накала (спирали), что отрицательно сказывается на их сроке службы, т.к. они предварительно не прогреваются и при холодном запуске перегорают от скачка тока (аналогично, как у ламп накаливания). А у нас ведь как раз сгорела одна из нитей накала (А1-А2) и это является хорошим тому подтверждением.

При установленном позисторе РТС, ток последовательно проходит через позистор РТС и нити накала, тем самым плавно их разогревая. Затем сопротивление позистора РТС увеличивается, переставая шунтировать лампу, что приводит к резонансу напряжений на конденсаторе С5 и электродах лампы. Высокое напряжение пробивает газ в колбе и лампа зажигается. Это и называется горячим запуском лампы, что положительно сказывается на сроке службы нитей накала.

Почему же выходят из строя электронные компоненты платы?

Причин на самом деле может быть несколько: использование бракованных элементов, низкое качество изготовления, неправильная эксплуатация (частые включения, пониженная или повышенная температура). Как видите, среди вышедших из строя ламп имеются, как китайские производители, так и известные брендовые, типа Osram и Philips. Тут, уж, кому как повезет.

Если у Вас сгорели сразу две нити накала, а электронная плата ЭПРА осталась исправной, то ее можно использовать для питания обычной трубчатой люминесцентной лампы, тем самым избавившись от схемы дросселя со стартером, и уменьшив ее коэффициент пульсаций.

P.S. Уважаемые читатели и гости сайта «Заметки электрика», у кого из Вас имеется опыт по ремонту энергосберегающих ламп, то буду рад, если поделитесь в комментариях своими наблюдениями. Спасибо за внимание.

93 комментариев к записи “Ремонт энергосберегающей лампы Sylvania мощностью 20 (Вт) своими руками”

    «Если у Вас сгорели сразу две нити накала, а электронная плата ЭПРА осталась исправной, то ее можно использовать для питания обычной трубчатой люминесцентной лампы, тем самым избавившись от схемы дросселя со стартером, и уменьшив ее коэффициент пульсаций.»

    Обратная замена допускается? То есть подключать колбу лампы КЛЛ к ЭПРА для обычной трубчатой ЛЛ.

    Обратная замена исключена.

    Админ, а почему сгорают нити накала либо элементы управления, это просчеты в схеме или специально сделано производителем? Я видел в ютубе выложены ролики про «запланированное» старение, это правда?

    Алексей, про запланированное старение я не верю. В конце статьи я указал реальные причины по которым выходят из строя лампы.

    Дмитрий, на фото тороидальный тр-р, кажется, не верно указан.
    И ещё один вопрос: обычные трубчатые ЛЛ (на 20 и 40(Вт)) можно также «лечить» резистором при обрыве нити? Спасибо.

    Где ж Вы раньше-то были?
    Регулярно восстанавливаю КЛЛ. Электронные платы-то ремонтировал, но не догадался шунтировать сгоревшую спираль резистором.
    Недавно сдал в переработку целый кулек с колбами. Сейчас буду пробовать впаивать резистор.
    Спасибо за совет!

    Не поверите, но когда дочитал про вскрытие корпуса,погасла одна из этих самых ламп Как по заказу ))

    Добрый вечер. Интересует такой вопрос, резистор МЛТ-1 сопротивлением 10 (Ом), советского производства? Или же российского? Если первый вариант, откуда такие запасы?)

    Статья полезна только в масштабах квартиры, и только для прижимистых владельцев))) Не вижу смысла делать ТАК на производстве, тем более государственном. Никто медаль не выдаст 100%. А статья очень полезная, спасибо за труд!

    Дмитрий, заинтересовала ваша статья про ремонт КЛЛ. Взялся за дело на ночь глядя, (нашлась одна завалявшаяся), сделал все по инструкции. Единственно, вместо 12 Ом (сопротивление целой нити) впаял шунт на 15 Ом(что нашлось). Лампа ЗАРАБОТАЛА! Ну думаю, можно идти спать с чувством выполненного долга. Однако, после непродолжительной работы лампы заметил, что колба очень сильно нагревается (как ЛН). Почему??? Ведь такого не должно быть. Всему виной неправильно подобранное сопротивление или же дело в самом принципе ШУНТА? Что то подобное происходило в вашем опыте?

    А как с улучшением вентиляции путем сверления корпуса?

    Андрей, Вы правы, резистор советского производства. Запасы сохранились с тех же времен. Резисторы и прочие плупроводниковые элементы закупали для группы ремонтов приборов, которая раньше входила в состав нашей электролаборатории. Сейчас группу перевели в другое подразделение, а запасы остались.

    Мсье Серж, занимаюсь их ремонтом не ради медали, а исключительно ради опыта.

    Антон, попробуйте заменить резистор на 9-10 (Ом) и повторите эксперимент. У меня лампа не греется больше обычного.

    elalex, на этом экземпляре сверлить отверстия для охлаждения не стал, хотя было бы не плохо.

    Дмитрий, может быть мой вопрос покажется вам глупым, но все же: Нить накала перегорела, мы устанавливаем шунт — за счет чего происходит розжиг лампы??? Ведь нить так и осталась в колбе перегоревшей???

    У меня проблема с эпра ми 18 X 4 .Замена эпра мучительное дело,схема расключки не совпадает с оригиналом,каждый раз приходиться снимать светильник,и делать новую проводку под новую эпра. Ест ли возможность ремонта сгоревшей эпра?

    А можно выложить версию для печати?

    Статья хорошая, но только для тех кто дружит с электроникой. Для людей далеких от таких вещей проще будет купить новую, чем искать специалиста для ремонта. Не думаю, что ремонт будет дешевле покупки новой лампы.
    Чисто мое мнение.

    Спасибо за статью,Дмитрий.Как всегда все разобрано основательно,лучше не напишешь.Для меня новшество-шунтирование перегоревшей нити.

    Опять спасибо!

    Я думаю, что перед тем, как измерять сопротивление нитей накаливания и определять их целостность, нужно отсоединить их от схемы. Или я не прав?

    Сергей, не обязательно, обходных цепочек нет.

    Антону (за 16.10.14.):За счёт 2-й нити накала — она испускает электроны, а впаянное сопротивление-шунт восстанавливает цепочку, которая должна работать перед поджигом лампы (перед пробоем газового промежутка). После зажигания лампы эта цепочка будет не нужна. См. схему, приведённую в статье. Аналог данной цепочки в обычных трубчатых лампах дневного света — электрическая цепь, в которой стоит стартёр (после поджига лампы стартёр шунтируется цепью через саму лампу, сопротивление которой становится небольшим).

    Дмитрий, спасибо за статью! У меня похожая по схеме лампа с ЭПРА. Проблема такая. Буквально вчера при работе лампы раздался маленький взрыв. Добрался до платы, обнаружил, в конце концов, что резисторы R3 и R4 в цепи базы транзисторов (по вашей схеме)- их номинал у меня оказался где-то 7 Ом (судя по цветным кругам) неисправны. Выпаял, заменил на исправные — при включении опять микровзрыв -(
    При этом проверил тестером уже все элементы, и емкости конденсаторов, никаких отклонений не обнаружил, на конденсатор C1 приходит порядка 300В. Никак не пойму, в чем проблема, не подскажете, в чем первопричина выхода из строя этих сопротивлений?

    Спасибо за статью. Восстановил две лампы))) В одной был отпаян контакт на спирали, у другой заменил высоковольтный конденсатор.
    На подходе еще три с обрывом нитей. Осталось найти резисторы.

    Андрею: А сами транзисторы проверили? Часто, из-за перегрева /нето, чтобы неудачный дизайн — я думаю, все специально так сделано дабы увеличить подажи этого хлама/ коротят сами транзисторы либо же выпрямители. В транзисторах первым погибает эмиттерный переход а уж оттуда… Хотя были штуки,/с виду вроде все ОК, а не пашут/ у которых коэфф.передачи тока ну, прям погибал. Был да сплыл, где-то нижи 5 и даже 3-х единиц. Опять-таки, из-за перегрева. Я корпуса «сверлил» жалом паяльника с боковых сторон /пока корпус разобран/. Все нормально. Еще вот что: Лампы дольше горят цоколем вниз, ибо тепло от трубок нагревает коробку, когда она сверху. Факт. Ставьте их, лучше, чтоб стояли, а не чтоб «висели». К тому же, надо время от времени сдувать пыль и зажаренные мотылечки с /недостаточных/ центральных отверстий на крышке корпуса, что со стороны трубочек. Засори отверстия, и 3,14здец конвективному охлаждению ППП. Те и так натянуты ну, по самые уши и без очков. Далее: лучше, если ставить на месте перегоревшей нити резистор то, до того, объединять два ее проводка, разорвав дорожку до /или после/ штырька, где ставим резистор. Улучшается эмиссия, ибо половинки нити уже при одинаковых потенциалах пашет.
    Т.е. должна пахать. А там-там посмотрим.

    Установил резистор 10 ом. Объединил 2 проводка. При подсоединении на один их выводов резистора зажглась. Греется конец колбы, где оборванная спираль. Пластмасса плавится.

    Админ, наверно глупый вопрос, но почему сопротивление 1Вт? Имеется лампа на 11Вт Эколайт. Проверил спирали, одна дохлая, вторая 12,3Ом. Имеется сопротивление 12 Ом/ 0,25Вт. Могу ли я поставить его, и что может произойти в моем случае, мне не хотелось бы устроить пожар при первом моем ремонте ламп??? Почитал про закон Ома. Мощность сопротивления можно рассчитать, но я знаю только сопротивление резистора. А какое напряжение подается на нити накаливания или какой ток через них протекает?

    Всё хорошо, но про шунтирование сгоревшей нити — откровенно вредный совет, кончиться может разгерметизацией колбы, бабахом ЭПРА, а то и пожаром. Нити в люминесцентных лампах как правило просто так не сгорают, с них в процессе эксплуатации распыляется паста-эмиттер (что хорошо видно по появлению характерной «копоти» на колбе лампы около нити), а т.к. чистый металл обладает худшими эмиссионными способностями, то нить начинает сильнее греться, вплоть до ярко-белого каления и плавления стекла колбы вместе с пластиком основания.

    Зашунтировать (достаточно простой перемычки, резистор -лишнее)нить можно лишь в том случае, когда эмиссия в норме, а например нить просто стрясли. И то подобная лампа будет миной замедленного действия. Справедливости ради, сберегайки все оными и являются, ведь защит у ЭПРА нету (предохранитель не в счет, да и встречаются экземпляры где его нет)вообще! Он будет молотить что называется до победного конца. Это в полной мере относится и к простейшим китайским ЭПРА для линейных ламп, собственно схема у них один к одному. Фирменный же ЭПРА просто отключится.

    И тут надо отметить, что «толстые» лампы по сравнению с компактными колбами имеют совершенно другие рабочие параметры (ниже напряжение, но больше ток) и поэтому подключать оные к ЭПРА от КЛЛ не совсем корректно. Лампа будет недогружена (а т.к. нити при работе подогреваются непосредственно током разряда, то при недогрузе с них будет усиленно распыляться эмиттер, ведь рассчитаны они на определенную рабочую температуру, которая достигается при номинальном токе, и в итоге лампа быстрее сдохнет), а сам ЭПРА будет перегружен. Посему подключать можно только схожие по общей длине/диаметру трубки лампы. И хорошо бы замерить фактическую потребляемую мощность получившегося «кентавра», что при отсутствии необходимых приборов, проще всего сделать запитав ЭПРА от постоянного тока (выпрямителя сети с достаточной емкостью фильтра, имеющегося в составе компьютерного БП например). Ток потребления мерять удобнее косвенно, без разрыва цепи, подключив ЭПРА в выпрямителю через низкоомный резистор с известным сопротивлением.

    Кстати, при ремонте ЭПРА, крайне желательно первое включение произвести через лампочку, если что-то не так, и в схеме коротыш, то «микровзрыва» не будет, а лишь загорится лампочка. Мощности лампочки ватт 60-75, или даже 40, вполне достаточно. Принцип тут следующий — начинать лучше с меньшей мощности, и если ЭПРА в целом ведет себя адекватно, то можно пробывать с большей мощностью лампочки, и затем уже напрямую в сеть.

    И еще полезно увеличить конденсатор фильтра, из расчета 1 мкФ на 1 Вт мощности ЭПРА, или попросту какой влезет. Очень тяжелый у него режим, размах пульсаций на нем под 100 В!.. Только тут нужно не забыть про бросок тока при включении, ведь ограничительного резистора штатно может и не быть, или потребуется замена его на помощнее.

    Админ,обратная замена (колба КЛЛ к ЭПРА прямых ламп) допускается,так как это абсолютно идентичные ЭПРА,только формой платы отличаются.кстати если приспособить колбу от КЛЛ к ЭПРА обычных прямых ламп типа ЛБ20 и тому подобных то и колба и ЭПРА проживет намного дольше(В КЛЛ плохо то что при эксплуатации лампы цоколем вверх ЭПРА ПРОСТО СЖАРИВАЕТСЯ от тепла колбы,поэтому и выходит из строя

    Эдуард, нельзя так делать! Режимы колб КЛЛ и прямых ламп различаются, о чем собственно я выше уже говорил. В данном случае мы перегрузим «тонкую» трубку колбы, жить она будет ярко, но недолго.

    А вот про эксплуатацию цоколем вверх — согласен.

    Я ремонтировал клл 55 вт, вместо штатного эпра поставил от лампы 30 вт, только заменил транзисторы на более мощные с13007 и конденсатор фильтра на 47 мкф. Работает более полугода и по сей день. Уменьшения яркости не заметно. На работе надоели жужжащие светильники 2х36 вт. У меня были эпра от клл 105 вт с колбой 6U. Переделал 3 светильника — работают прекрасно уже года два. Поменял 2 или 3 лампы за все время из-за обрыва накала.

    Спасибо за статью.
    В абзаце где говорится про трансформатор, на картинке стрелкой указано на дросель. Трансформатор находится за ним, намотан на феритовом кольце.

    Спасибо за статью. Я столкнулся с тем, что при выключении лампы в комнате она начинает моргать с периодом в 5-10 секунд, что это может быть. Лампа новая.

    Были сданы на утилизацию более 20 ламп 30-55 ватт. Стал разбираться. Причина выхода из строя у всех одна, сгорела ЭПРА, нити накала целы. Видно стояли в герметичных светильниках, отсюда перегрев. По поводу использования ЭПРА с трубчатыми лампами 18 Ватт, 2,5 года полет нормальный, при условии использования ЭПРА от 18 Ваттной сберегающей лампы. Ставил от более мощной 20-26 Ватт хватает на пол года и перегорает спираль на трубчатой лампе. Так-же использую исправные ЭПРА как электронный трансформатор со стабилизатором на 12 Вольт для светодиодов и светодиодной ленты
    2 года, пока без претензий. Только пришлось на транзисторы закрепить радиаторы. Также использую востановленные лампы с разными колбами и ЭПРА, но одинаковой мощности, 3-4 года уже работают. Буду пробовать зажигать лампы с шунтом, пробовал без шунта, греются.

    Спасибо, вы были правы, сейчас фазу пустил через выключатель лампа перестала моргать, но по ней проходят какие то всполохи. Это наверное из-за низкого качества самой лампы, как вы уже писали.

    Впаял резистор, лампа посветила минут пять, пукнула и потухла, горячущая была. Я думаю тут не берётся в расчёт сопротивление холодной и горячей спирали. Когда спирали нагреваются сопротивление их растёт, а резистор как был 10 Ом так и остался. Может для маломощных не подходит такой способ или надо поиграть с сопротивлением резюка. Лампа 11 W.

    Попробую внести скромную лепту в тему)) причина как минимум 8 из 10 неисправностей в схемке ЭПРА-это пробой высоковольтного конденсатора в цепи поджига(тот что на 1кВ) Пробовал починить неисправные КЛЛ-почти все ожили после его замены.

    Напряжение сети в моем доме 259В, КЛЛ перегорают от перегрева. Могу ли я попробовать их переделать под завышеное напряжение отмотав провод на выходе повышающего трансформатора ЭПРА?

    Ярославу 20.05.2015 в 16:13
    А если напряжение восстановится, будете доматывать? А как остальные приборы квартиры, наверно тоже страдают?
    На первый случай срежьте 10-15В на всей квартире автотрансформатором, непрерывно снимайте статистику напряжения сети, а дальше видно будет.

    Ярослав, обратитесь в электросети — 259 (В) — это величина напряжения выше предельно-допустимой нормы. Пусть снижают, т.к. это является нарушением.

    Спасибо за советы, но я живу на хуторе, где 10 дворов. Напряжение не ниже 250В уже много лет, заявления не помогают. Разве что собирать какие нибудь бумажные доказательства и обращаться в суд. Каждый телевизор работает через отдельный стабилизатор. Техника времен советского союза такого напряжения не боится, кроме пылесоса — сгорел через несколько минут работы, а в городе, где напряжение в норме работал долгие годы. Лампы накаливания светят ярче и быстрее перегорают. Так что задумался над переделкой техники. Насчет доматывания — думаю не понадобится, поскольку заниженое напряжение не будет так критично как завышеное. Современное радио уже переработал, добавив в схему микросхему стабилизатора КРЕН142.

    Найдите мощный автотрансформатор и питайте все, если у вас таки постоянно 250.

    Смотрю тема актуальна до сих пор, поэтому вопрос! Опытным путём сам пробовал делать эти шунтирования пол года назад. Лампа в районе цоколя разогревается до высокой температуры и в итоге через пару часов работы выгорает схема, что именно не ковырял. Себе представляю чисто теоретически что лампы в потолочных светильниках трубки которые (20,40,80) имеют тот-же принцип как и энергосберегайки. На потолочные собирал схему с умножителем на 4х диодах и ёмкостях, применяется в случае обрыва нитей накала, статей полно в сети. Но вот не рванёт ли эта мелкая трубочка от энергосберегайки если её оживить схемой на умножителе? Кто пробовал???

    А купить(или собрать)стабилизатор не проще? есть же любительские несложные схемы стабилизаторов как раз на основе автотрансформатора с электронным переключением отводов

    Хотел б видеть…Трансформатор с четырьмя- пятью отводами мало даст пользы, т.к. слишком «широкие» будут ступени регулировки выходного, и даже такое надо уметь мотать, отводы делать, ой, не так это просто. Схемы есть, не вопрос, но это тоже все привязать надо к автотрансформатору, найти хорошие, качественные реле, создать схему, не допускающую закороток секций тр-ра при переходе со ступени на ступень и много раз за сутки. Чесслово- проще найти хороший готовый.

    Коллеги у меня есть штук пять рабочих колб и несколько различных балластов, все от ламп 15-20Вт. Но вот подзабыл как подключать нити колбы к балласту, ибо последний раз ремонтировал года 2 назад. Имеет ли значение куда какую нить, так сказать есть ли «+» и «-» у них или без разницы куда прикручивать? И еще нити нужно обязательно прикручивать или можно припаять к балласту?

    Евгений, + и — нет, можете прикручивать как удобно, одну пару слева, вторую справа от конденсатора. На плате должны быть соответствующие штыри.
    Я обычно штыри менял на новые, т.к. старые в окисле.
    Чтобы не повредить колбу, я особо не прилагал усилий к нитям, поэтому накрутить качественно не всегда получается, особенно на маленьких платах. Следовательно в дополнение еще пропаивал немножко.

    По совету автора ремонтировал лампы шунтированием сгоревшей спирали сопротивлением. В итоге лампа работает максимум 3 часа и перегорает. Не вижу смысла ковыряться.Тем более светодиодные уже менее 200 рублей стоят, нужно переходить на современные технологии. А вообще сайт полезный и нужный,спасибо автору за труд.

    К сожалению, шунтирование чревато и чаще результат будет отрицательным. Такие лучше сразу откладывать в коробку и потом сдавать в пункт сбора.

    А вообще предыдущий правильно отметил — надо уходить на светодиодные: на AliExpress «кукурузы» 25 Вт по 130 рублей.

    Причем в отличие от КЛЛ нет опасности, что разобьется.

    И главное — возможный ремонт на порядок проще: никаких ВЧ-генераторов — простое понижение до напряжения питания гирлянды.

    А уж если сдох диод (тёмная точка), то там же на Ali выписать рулончик SMD5730 (100 шт) для возможного ремонта.

    1- кукурузы ваши тоже иногда питают через более сложный балласт, чем просто конденсатор, и ВЧ. там тоже есть.
    2- деградация кристаллов в простых схемах питания- явление традиционное, выгорание- в дешевых массово.
    Если вспомним разговор о ЛЛ и проч, то тут аналогично- хрошие СД-светильники не могут дешевыми быть.
    3- Али и проч. продадут что угодно, а будуд ли ВАХ этих диодов близки вашим старым?
    4- опасности разбития нет, а нагрев?

    Здравствуйте, в статье ошибка. На одном из фото показан не тороидальный трансформатор, а выходной дроссель. Трансформатор, как видно из названия, имеет кольцеобразный сердечник.

    Артем, что такое ТОР я знаю и давно, но если в проспекте прописано такое, то что делать обывателю?

    Доброго времени суток!
    Я в последнее время столкнулся с такой проблемой. По какой то причине начинают перегреваться и выходить из строя нити накала лампы. Т.е. места в колбе темнеют а пластик в этом месте аж обугливается.
    В чём же может быть дело? Если шунтирующие колбу конденсаторы не пробиты и РТС в норме.

    На картинке *29.jpg неверно указан торроидальный трансформатор.
    Стрелка указывает на дроссель, а сам трансформатор частично виден
    на том-же снимке.

    Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

    Модели диодного типа

    Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

    Двухконтактные модели

    Данного типа схема электронного балласта для отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

    Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.

    Схема балласта "Эпра" 18 Вт

    Данная для люминесцентной лампы включает в себя а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

    Балласт "Эпра" 2х18 Вт

    Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов "Эпра" 18 Вт есть дроссель, который располагается под трансформатором.

    Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.

    Схема балласта "Эпра" 4х18 Вт

    Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.

    Балласт Navigator

    Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

    В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.

    Схема электронного балласта на транзисторах EN13003A

    Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

    Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

    Использование понижающих трансформаторов

    Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

    Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

    Применение векторных транзисторов

    Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

    Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.

    Схема с интегральным котроллером

    Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

    Применение низкочастотных триггеров

    Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

    Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

    Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

    Принцип действия КЛЛ заключается в подаче на 2-а электрода покрытых барием или окисью бария, напряжения, в результате чего происходит возбуждение(ионизация) паров смеси аргона и ртути. В результате ионизации возникает низкотемпературная плазма внутри лампы. Пары ртути излучают ультрафиолетовое излучение, которое преобразуется в видимый свет посредством люминесцентного материала которым покрыта внутренняя часть лампы. Спект свечения КЛЛ зависит от состава люминофора. Цветовая температура колбы разная, при Т=2700К лампа имеет теплый свет, при Т=4000К дневной, а при Т=6400К холодный дневной свет.

    Питание КЛЛ производится от преобразователя который работает на ВЧ вплоть до нескольких десятков кГц. Поэтому Мы не видим мерцания лампы в отличии от ТЛЛ. Главное в КЛЛ пускорегулирующий аппарат (ЭПРА). В недорогих КЛЛ ЭПРА простой, в нем простой выходной фильтр, нет коррекции коэффициента мощности, упрощенная защита. В таких КЛЛ устанавливается автогенераторные схемы с трансформатором или полу мостовым каскадом на биполярных транзисторах. Генератором обычно служат 2-а транзистора. Правильный подбор этих транзисторов определяет срок службы лампы, так например для выходной мощности 1…9Вт применяют транзисторы серии 13001 ТО-92, 11Вт — 13002 ТО-92, 15…20Вт 13003ТО-126, для 25…40Вт — 13005 ТО-220, 40…65Вт серия 13007 ТО-220, для 85Вт серия 13009 ТО-220.

    Постоянное напряжение поступает на вход генератора с двух полупериодного выпрямителя(4-е диода), далее следует емкостной фильтр (электролитический конденсатор), при чрезмерно большой емкости конденсатора появится мерцание при работе с выключателем с подсветкой. Так например при КЛЛ 20Вт достаточно 4,7мкФ.

    В некоторых лампах прогрев спирали не регулируется что уменьшает их срок службы.

    В основу КЛЛ входят — колебательный контур который состоит из дросселя L, импульсного трансформатора TR и друх конденсаторов. Оба конденсатора, дроссель и одна из обмоток трансформатора последовательно соединены со спиралью лампы. Кол-во витков трансформатора мало, его обмотки содержат по 5-10 витков.

    Резонансная частота контура определена значением емкости конденсатора С, включенного между спиралями КЛЛ.

    При работе КЛЛ при ионизации газа происходит короткое замыкание конденсатора, соединенного последовательно со спиралью. В следствии чего часто выходит из строя этот конденсатор (частая поломка).

    В начале при ремонте необходимо проверить спираль лампы, целостность колбы, а далее предохранитель (если он в обще установлен). Далее проверяем оба конденсатора колебательного контура, далее проверяем резисторы и переходы транзисторов.

    Все эти действия производим если вы уверены в целостности колбы КЛЛ.

    Принципиальные схемы КЛЛ показаны на рисунках 1-16.

    КЛЛ типа Brownie 20w рис.1 , Isotronic 11w рис.2 , Luxtek 8w рис.3 и Sinecan 30w рис.4 на входе 230В имеют импульсный трансформатор напряжение с которого подается на диодный мостик, на рис.3 для более гладкого пуска используется термистор РТС.

    Разогретые электроды и РТС имеют достаточно большое сопротивление, а сопротивление ионизированного газа достаточно мало, и ток начинает течь через разряд в колбе. Колба шунтирует пусковой контур, и он выходит из резонанса с ВЧ генератором. Балласт переходит в режим рабочего напряжения 320В. Применение РТС значительно снижает износ электродов и увеличивает срок службы лампы. Так же возможна установка NTC термистора который устанавливается последовательно со спиралью лампы.

    Иногда напряжение подается через дроссель как показано на схеме КЛЛ типа Polaris 11 w рис.5 , ikea 7w рис.6 и Luxar 11w рис. 7. В лампе рис.6 между спиралями установлен термистор R5 выполняющий плавный пуск КЛЛ.

    Функциями ограничения пускового тока являются резисторы и предохранитель установленные в КЛЛ типа lm-mediatally 25w рис.8, Osram Dulix EL 11w рис.9 и EL 21w рис.10. Диды D1 D2 в дампах рис.9 и рис.10 не установлены поскольку между коллектором и эмиттером используемых транзисторов есть встроенные диоды. На рис.10 отсутствует термистор из-за низкой стоимости лампы.

    В лампе maxi-lux 15w рис.11 установлен только предохранитель, Maway 11w рис.12 , Philips Ecotone 11 w рис13, Philips Genie 11w рис.14 только резистор 10 Ом 1Вт.

    Самые дешевые лампы Bigluz 20w рис.15 и Eurolite 23w не имеют даже предохранителей, эти лампы с большой вероятностью выйдут из строя.

    После удачного ремонта лампы необходимо установить предохранитель если его не было, для плавного пуска установите термистор РТС параллельно резонансному конденсатору.

    Литература — Радиоаматор 2010-12

    Литература используемая автором (П.П. Бобнич, г. Ужгород)
    1.Бобнич П.П. Электрическая светодиодная лампа // Радиоаматор 2010-7-8 с.42-44
    2.Бобнич П.П Светодиодная лампа на напряжение 220В // Электрик — 2010 — №9 — С.62-63.
    3.Власюк Н.П. Электронный балласт компактной люминесцентной лампы дневного света фирмы Delux // Радиоаматор 2009. №1 С.43-45
    4.Широков В. Выбор, применение и ремонт компактных люминесцентных ламп.
    5.Власюк Н.П. Люминесцентные лампы и их электронные балласты // Радиаматор — 2009 №5 С.34-37.
    6.Власюк Н.П. Люминесцентные лампы и их электронные балласты // Радиаматор — 2009 №6 С.34-37.
    7.Кашкаров А.А. Ремонт энергосберегающей лампы // Электрик 2009№9 С.66-67
    8.Шелехов А.А. Быстрый ремонт энергосберегающих ламп // Радиоаматор 2009№5 С.38.

    В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

    Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

    Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

    Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

    Устройство компактной люминесцентной лампы (КЛЛ).

    Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

    Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

    По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA . Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

    Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

    Миниатюрный симметричный динистор DB3 (VS1 ) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

    Диодный мост , выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

    При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1 , дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии:) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1 , который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

    Дроссель L2 обычно собран на Ш -образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор . На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1 . Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

    Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

    Ремонт бытовых люминесцентных ламп с электронным балластом.

    Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

    Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

    Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

    Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

    При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

    Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

    Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

    Разборка люминесцентной лампы с электронным балластом.

    Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

    Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

    Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

    Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

    Восстановление работоспособности ламп с электронным балластом.

    При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра . Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

    Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

    Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

    В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

    Холодный и горячий режим запуска люминесцентных ламп.

    Бытовые люминесцентные лампы бывают двух типов:

      С холодным запуском

      С горячим запуском

    Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

    Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

    Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

    Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC - терморезистор) . На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

    В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

    В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

    Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

    Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

    Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.