Как находить двугранный угол. Двугранный угол. Четырехугольная и угол при ее основании

Между перпендикулярами к ребру двугранного угла, восстановленными в обеих гранях из одной точки.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЛИНЕЙНЫЙ УГОЛ" в других словарях:

    Moltke Крейсер «Мольтке» в Нью Йорке в 1912 году Основная информация Тип … Википедия

    Муж. перелом, излом, колено, локоть, выступ или залом (впадина) об одной грани. Угол линейный, всякие две встречные черты и промежуток их; угол плоскостной или в плоскостях, встреча двух плоскостей или стен; угол толстый, теловой, встреча в одной … Толковый словарь Даля

    Линкор … Википедия

    А в векторном пространстве L отображение, сопоставляющее каждому вектору е век poro множества D (содержащегося в L и наз. областью определения Л. о.) др. вектор, обозначаемый Ае (и называемый значением Л. о. на векторе е). Выполнены след. условия … Физическая энциклопедия

    У этого термина существуют и другие значения, см. Линейный корабль (значения). «Дредноут» родоначальник класса линкоров … Википедия

    Необходимо перенести содержимое этой статьи в статью «Слава (броненосец)». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон {{к объединению}} … Википедия

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: ввести понятие двугранного угла и его линейного угла;

  • рассмотреть задачи на применение этих понятий;
  • сформировать конструктивный навык нахождения угла между плоскостями;
  • рассмотреть задачи на применение этих понятий.
  • Ход урока

    I. Организационный момент.

    Сообщить тему урока, сформировать цели урока.

    II. Актуализация знаний учащихся (слайд 2, 3).

    1. Подготовка к изучению нового материала.

    Что называется углом на плоскости?

    Что называется углом между прямыми в пространстве?

    Что называется углом между прямой и плоскостью?

    Сформулируйте теорему о трех перпендикулярах

    III. Изучение нового материала.

    • Понятие двугранного угла.

    Фигура, образованная двумя полуплоскостями , проходящими через прямую МN, называется двугранным углом (слайд 4).

    Полуплоскости - грани, прямая МN – ребро двугранного угла.

    Какие предметы в обыденной жизни имеют форму двугранного угла? (Cлайд 5)

    • Угол между плоскостями АСН и СНD – это двугранный угол АСНD, где СН – ребро. Точки А и D лежат на гранях этого угла. Угол AFD – линейный угол двугранного угла АCHD (слайд 6).
    • Алгоритм построения линейного угла (слайд 7).

    1 способ. На ребре взять любую точку О и провести перпендикуляры в эту точку (РО DE, KO DE) получили угол РОК - линейный.

    2 способ. В одной полуплоскости взять точку К и опустить из нее два перпендикуляра на другую полуплоскость и ребро (КО и КР), тогда по теореме обратной ТТП РОDE

    • Все линейные углы двугранного угла равны (слайд 8). Доказательство: лучи ОА и О 1 А 1 сонаправлены, лучи ОВ и О 1 В 1 тоже сонаправлены, углы ВОА и В 1 О 1 А 1 равны как углы с сонаправлеными сторонами.
    • Градусной мерой двугранного угла называется градусная мера его линейного угла (слайд 9).

    IV. Закрепление изученного материала.

    • Решение задач (устно по готовым чертежам). (Слайды10-12)

    1. РАВС – пирамида; угол АСВ равен 90 о, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол РСВ – линейный угол двугранного угла с

    2. РАВС - пирамида; АВ = ВС, D – середина отрезка АС, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол PDB – линейный угол двугранного угла с ребром АС.

    3. PABCD – пирамида; прямая РВ перпендикулярна плоскости АВС, ВК перпендикулярна DC. Доказать, что угол РКВ – линейный угол двугранного угла с ребром СD.

    • Задачи на построение линейного угла (слайды 13-14).

    1. Построить линейный угол двугранного угла с ребром АС, если в пирамиде РАВС грань АВС – правильный треугольник, О – точка пересечения медиан, прямая РО перпендикулярна плоскости АВС

    2. Дан ромб АВСD.Прямая РС перпендикулярна плоскости АВСD.

    Построить линейный угол двугранного угла с ребром ВD и линейный угол двугранного угла с ребром АD.

    • Вычислительная задача. (Слайд 15)

    В параллелограмме АВСD угол АDС равен 120 0 , АD = 8 см,

    DС= 6 см, прямая РС перпендикулярна плоскости АВС, РС= 9 см.

    Найти величину двугранного угла с ребром АD и площадь параллелограмма.

    V. Домашнее задание (слайд16).

    П. 22, № 168, 171.

    Используемая литература:

    1. Геометрия 10-11 Л.С.Атанасян.
    2. Система задач по теме “Двугранные углы” М.В.Севостьянова (г.Мурманск), журнал Математика в школе 198… г.

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    ДВУГРАННЫЙ УГОЛ Учитель математики ГОУ СОШ №10 Еременко М.А.

    Основные задачи урока: Ввести понятие двугранного угла и его линейного угла Рассмотреть задачи на применение этих понятий

    Определение: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой.

    Величиной двугранного угла называется величина его линейного угла. AF ⊥ CD BF ⊥ CD AFB -линейный угол двугранного угла ACD В

    Докажем, что все линейные углы двугранного угла равны друг другу. Рассмотрим два линейных угла АОВ и А 1 ОВ 1 . Лучи ОА и ОА 1 лежат в одной грани и перпендикулярны ОО 1 , поэтому они сонаправлены. Лучи ОВ и ОВ 1 также сонаправлены. Следовательно, ∠ АОВ = ∠ А 1 ОВ 1 (как углы с сонаправленными сторонами).

    Примеры двугранных углов:

    Определение: Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.

    Задача 1: В кубе A … D 1 найдите угол между плоскостями ABC и CDD 1 . Ответ: 90 o .

    Задача 2: В кубе A … D 1 найдите угол между плоскостями ABC и CDA 1 . Ответ: 45 o .

    Задача 3: В кубе A … D 1 найдите угол между плоскостями ABC и BDD 1 . Ответ: 90 o .

    Задача 4: В кубе A … D 1 найдите угол между плоскостями ACC 1 и BDD 1 . Ответ: 90 o .

    Задача 5: В кубе A … D 1 найдите угол между плоскостями BC 1 D и BA 1 D . Решение: Пусть О – середина В D. A 1 OC 1 – линейный угол двугранного угла А 1 В D С 1 .

    Задача 6: В тетраэдре DABC все ребра равны, точка М – середина ребра АС. Докажите, что ∠ DMB – линейный угол двугранного угла BACD .

    Решение: Треугольники ABC и ADC правильные, поэтому, BM ⊥ AC и DM ⊥ AC и, следовательно, ∠ DMB является линейным углом двугранного угла DACB .

    Задача 7: Из вершины В треугольника АВС, сторона АС которого лежит в плоскости α , проведен к этой плоскости перпендикуляр ВВ 1 . Найдите расстояние от точки В до прямой АС и до плоскости α , если АВ=2, ∠ВАС=150 0 и двугранный угол ВАСВ 1 равен 45 0 .

    Решение: АВС – тупоугольный треугольник с тупым углом А, поэтому основание высоты ВК лежит на продолжении стороны АС. ВК – расстояние от точки В до АС. ВВ 1 – расстояние от точки В до плоскости α

    2) Так как АС ⊥ВК, то АС⊥КВ 1 (по теореме, обратной теореме о трех перпендикулярах). Следовательно, ∠ВКВ 1 – линейный угол двугранного угла ВАСВ 1 и ∠ВКВ 1 =45 0 . 3) ∆ВАК: ∠А=30 0 , ВК=ВА· sin 30 0 , ВК =1. ∆ВКВ 1: ВВ 1 =ВК· sin 45 0 , ВВ 1 =

    Стереометрия

    Глава 9. Прямые и плоскости в пространстве

    9.8. Двугранный угол и его линейный угол

    Плоскость разделяется лежащей в ней прямой на две полуплоскости.

    Определение 1

    Фигура, образованная двумя полуплоскостями, выходящими из одной прямой, вместе с частью пространства, ограниченной этими полуплоскостями, называется двугранным углом. Полуплоскости называются гранями, а их общая прямая - ребром двугранного угла.

    Грани двугранного угла делят пространство на две области: внутреннюю область данного двугранного угла и его внешнюю область.

    Определение 2

    Два двугранных угла называются равными, если один из них можно совместить с другим так, что совместятся их внутренние области.

    Определение 3

    Угол между двумя перпендикулярами к ребру двугранного угла, проведенными в его гранях из одной точки ребра, называется линейным углом двугранного угла.

    1 . Угол (), получающийся при пересечении двугранного угла плоскостью, перпендикулярной к его ребру, есть линейный угол данного двугранного угла.

    2 . Величина линейного угла не зависит от положения его вершины на ребре, т. е. .

    3 . Линейные углы равных двугранных углов равны (следует из определений 2 и 3).

    Определение 4

    Из двух двугранных углов тот называется большим (меньшим), который имеет больший (меньший) линейный угол. За единицы измерения двугранных углов принимают такие двугранные углы, линейные углы которых равны

    Понятие двугранного угла

    Для введения понятия двугранного угла, для начала вспомним одну из аксиом стереометрии.

    Любую плоскость можно разделить на две полуплоскости прямой $a$, лежащей в этой плоскости. При этом, точки, лежащие в одной полуплоскости находятся с одной стороны от прямой $a$, а точки, лежащие в разных полуплоскостях -- по разные стороны от прямой $a$ (рис. 1).

    Рисунок 1.

    На этой аксиоме основан принцип построение двугранного угла.

    Определение 1

    Фигура называется двугранным углом , если она состоит из прямой и двух полуплоскостей этой прямой, не принадлежащих одной плоскости.

    При этом полуплоскости двугранного угла называются гранями , а прямая, разделяющая полуплоскости -- ребром двугранного угла (рис. 1).

    Рисунок 2. Двугранный угол

    Градусная мера двугранного угла

    Определение 2

    Выберем на ребре произвольную точку $A$. Угол между двумя прямыми, лежащими в разных полуплоскостях, перпендикулярных ребру и пересекающихся в точке $A$ называется линейным углом двугранного угла (рис. 3).

    Рисунок 3.

    Очевидно, что каждый двугранный угол имеет бесконечное число линейных углов.

    Теорема 1

    Все линейные углы одного двугранного угла равняются между собой.

    Доказательство.

    Рассмотрим два линейных угла $AOB$ и $A_1{OB}_1$ (рис. 4).

    Рисунок 4.

    Так как лучи $OA$ и ${OA}_1$ лежат в одной полуплоскости $\alpha $ и перпендикулярны одной прямой, то они являются сонаправленными. Так как лучи $OB$ и ${OB}_1$ лежат в одной полуплоскости $\beta $ и перпендикулярны одной прямой, то они являются сонаправленными. Следовательно

    \[\angle AOB=\angle A_1{OB}_1\]

    В силу произвольности выборов линейных углов. Все линейные углы одного двугранного угла равны между собой.

    Теорема доказана.

    Определение 3

    Градусной мерой двугранного угла называется градусная мера линейного угла двугранного угла.

    Примеры задач

    Пример 1

    Пусть нам даны две неперпендикулярные плоскости $\alpha $ и $\beta $ которые пересекаются по прямой $m$. Точка $A$ принадлежит плоскости $\beta $. $AB$ -- перпендикуляр к прямой $m$. $AC$ перпендикуляр к плоскости $\alpha $ (точка $C$ принадлежит $\alpha $). Доказать, что угол $ABC$ является линейным углом двугранного угла.

    Доказательство.

    Изобразим рисунок по условию задачи (рис. 5).

    Рисунок 5.

    Для доказательства вспомним следующую теорему

    Теорема 2: Прямая, проходящая через основание наклонной, перпендикулярно ей, перпендикулярна её проекции.

    Так как $AC$ - перпендикуляр к плоскости $\alpha $, то точка $C$ - проекция точки $A$ на плоскость $\alpha $. Следовательно, $BC$ -- проекция наклонной $AB$. По теореме 2, $BC$ перпендикулярна ребру двугранного угла.

    Тогда, угол $ABC$ удовлетворяет всем требованиям определения линейного угла двугранного угла.

    Пример 2

    Двугранный угол равен $30^\circ$. На одной из граней лежит точка $A$, которая удалена от другой грани на расстояние $4$ см. Найти расстояние от точки $A$ до ребра двугранного угла.

    Решение.

    Будем рассматривать рисунок 5.

    По условию, имеем $AC=4\ см$.

    По определению градусной меры двугранного угла, имеем, что угол $ABC$ равен $30^\circ$.

    Треугольник $ABC$ является прямоугольным треугольником. По определению синуса острого угла

    \[\frac{AC}{AB}=sin{30}^0\] \[\frac{5}{AB}=\frac{1}{2}\] \