Cea mai joasă stare de oxidare a metalelor este egală cu. Principalele metode de obținere a oxizilor

Pregătire chimică pentru cancer și DPA
Ediție cuprinzătoare

PARTEA ȘI

CHIMIE GENERALĂ

LEGĂTURILE CHIMICE ȘI STRUCTURA SUBSTANȚEI

Starea de oxidare

Starea de oxidare este sarcina condiționată a unui atom dintr-o moleculă sau un cristal care ar apărea pe acesta atunci când toate legăturile polare create de acesta ar fi de natură ionică.

Spre deosebire de valență, stările de oxidare pot fi pozitive, negative sau zero. La compușii ionici simpli, starea de oxidare coincide cu sarcinile ionilor. De exemplu, în clorură de sodiu NaCl (Na + Cl - ) Sodiul are o stare de oxidare de +1, iar clorul -1, în oxidul de calciu CaO (Ca +2 O -2, calciul prezintă o stare de oxidare de +2, iar oxisenul - -2). Această regulă se aplică tuturor oxizilor de bază: starea de oxidare a unui element metalic este egală cu sarcina ionului metalic (Sodiu +1, Bariu +2, Aluminiu +3), iar starea de oxidare a oxigenului este -2. Starea de oxidare este indicată de cifre arabe, care sunt plasate deasupra simbolului elementului, precum valența, și indică mai întâi semnul sarcinii, apoi valoarea sa numerică:

Dacă modulul stării de oxidare este egal cu unu, atunci numărul „1” poate fi omis și se poate scrie doar semnul: Na + Cl -.

Numărul de oxidare și valența sunt concepte legate. În mulți compuși, valoarea absolută a stării de oxidare a elementelor coincide cu valența acestora. Cu toate acestea, există multe cazuri în care valența diferă de starea de oxidare.

În substanțele simple - nemetale, există o legătură covalentă nepolară, perechea de electroni comună este deplasată la unul dintre atomi, prin urmare starea de oxidare a elementelor din substanțele simple este întotdeauna zero. Dar atomii sunt legați între ei, adică prezintă o anumită valență, ca, de exemplu, în oxigen valența oxigenului este II, iar în azot valența azotului este III:

În molecula de peroxid de hidrogen, valența oxigenului este de asemenea II, iar cea a hidrogenului este I:

Definiţia posibil degrees oxidarea elementelor

Stări de oxidare, ce elemente pot prezenta diverse conexiuni, în majoritatea cazurilor poate fi determinată de structura exteriorului nivel electronic sau după locul elementului în Tabelul Periodic.

Atomi elemente metalice pot dona doar electroni, astfel încât în ​​compuși ei prezintă stări de oxidare pozitive. Valoarea sa absolută în multe cazuri (cu excepția d -elemente) este egal cu numărul de electroni din nivelul exterior, adică numărul grupului din Tabelul Periodic. Atomi d -elementele pot dona electroni si de la un nivel superior si anume din neumplut d -orbitali. Prin urmare pentru d -elemente, determinarea tuturor stărilor de oxidare posibile este mult mai dificilă decât pentru s- și p-elemente. Este sigur să spunem că majoritatea d -elementele prezintă o stare de oxidare de +2 datorită electronilor la nivelul electronilor exteriori, iar starea de oxidare maximă în majoritatea cazurilor este egală cu numărul grupului.

Atomii elementelor nemetalice pot prezenta atât stări de oxidare pozitive, cât și negative, în funcție de atomul elementului cu care formează o legătură. Dacă un element este mai electronegativ, atunci prezintă o stare de oxidare negativă, iar dacă este mai puțin electronegativ, prezintă o stare de oxidare pozitivă.

Valoarea absolută a stării de oxidare a elementelor nemetalice poate fi determinată de structura stratului electronic exterior. Un atom este capabil să accepte atât de mulți electroni încât opt ​​electroni sunt localizați la nivelul său exterior: elementele nemetalice din grupa VII acceptă un electron și prezintă o stare de oxidare de -1, grupa VI - doi electroni și prezintă o stare de oxidare de - 2, etc.

Elementele nemetalice sunt capabile să degaje număr diferit electroni: maxim cât se află la nivelul energetic exterior. Cu alte cuvinte, starea maximă de oxidare a elementelor nemetalice este egală cu numărul grupului. Datorită circulației electronilor la nivelul exterior al atomilor, numărul de electroni nepereche pe care un atom îi poate dona reacții chimice, pot fi diferite, astfel încât elementele nemetalice sunt capabile să detecteze diferite valori intermediare ale stării de oxidare.

Posibile stări de oxidare elementele s- și p

Grupul PS

Cea mai înaltă stare de oxidare

Stare intermediară de oxidare

Stare de oxidare mai scăzută

Determinarea stărilor de oxidare în compuși

Orice moleculă neutră din punct de vedere electric, prin urmare, suma stărilor de oxidare ale atomilor tuturor elementelor trebuie să fie egală cu zero. Să determinăm gradul de oxidare în sulf(I) V) oxid SO 2 taufosfor (V) sulfură P 2 S 5.

Oxid de sulf(IV) SO2 format din atomi ai două elemente. Dintre acestea, Oxigenul are cea mai mare electronegativitate, astfel încât atomii de oxigen vor avea o stare de oxidare negativă. Pentru oxigen este egal cu -2. În acest caz, sulful are o stare de oxidare pozitivă. Sulful poate prezenta diferite stări de oxidare în diferiți compuși, așa că în acest caz trebuie calculat. Într-o moleculă SO 2 doi atomi de oxigen cu o stare de oxidare de -2, deci sarcina totală a atomilor de oxigen este -4. Pentru ca molecula să fie neutră din punct de vedere electric, atomul de sulf trebuie să neutralizeze complet sarcina ambilor atomi de oxigen, prin urmare, starea de oxidare a sulfului este +4:

În moleculă există fosfor ( V) sulfură P2S5 Elementul mai electronegativ este Sulful, adică prezintă o stare de oxidare negativă, iar Fosforul are o stare de oxidare pozitivă. Pentru sulf, starea de oxidare negativă este de numai 2. Împreună, cei cinci atomi de sulf poartă o sarcină negativă de -10. Prin urmare, doi atomi de fosfor trebuie să neutralizeze această sarcină cu o sarcină totală de +10. Deoarece există doi atomi de fosfor în moleculă, fiecare trebuie să aibă o stare de oxidare de +5:

Este mai dificil de calculat starea de oxidare în compușii nebinari - săruri, baze și acizi. Dar pentru aceasta ar trebui să utilizați și principiul neutralității electrice și, de asemenea, să vă amintiți că, în majoritatea compușilor, starea de oxidare a oxigenului este -2, hidrogen +1.

Să ne uităm la asta folosind sulfatul de potasiu ca exemplu. K2SO4. Starea de oxidare a potasiului în compuși poate fi doar +1, iar oxigenul -2:

Folosind principiul neutralității electrice, calculăm starea de oxidare a sulfului:

2(+1) + 1 (x) + 4 (-2) = 0, de unde x = +6.

La determinarea stărilor de oxidare ale elementelor din compuși, trebuie respectate următoarele reguli:

1. Starea de oxidare a unui element dintr-o substanță simplă este zero.

2. Fluorul este elementul chimic cel mai electronegativ, prin urmare starea de oxidare a Fluorului în toți compușii este egală cu -1.

3. Oxigenul este cel mai electronegativ element după Fluor, prin urmare starea de oxidare a Oxigenului în toți compușii cu excepția fluorurilor este negativă: în majoritatea cazurilor este -2, iar în peroxizi - -1.

4. Starea de oxidare a Hidrogenului în majoritatea compușilor este +1, iar în compușii cu elemente metalice (hidruri) - -1.

5. Starea de oxidare a metalelor în compuși este întotdeauna pozitivă.

6. Elementul mai electronegativ are întotdeauna grad negativ oxidare.

7. Suma stărilor de oxidare ale tuturor atomilor dintr-o moleculă este zero.


În chimie, termenii „oxidare” și „reducere” se referă la reacții în care un atom sau un grup de atomi pierde sau, respectiv, câștigă electroni. Starea de oxidare este o valoare numerică atribuită unuia sau mai multor atomi care caracterizează numărul de electroni redistribuiți și arată modul în care acești electroni sunt distribuiți între atomi în timpul unei reacții. Determinarea acestei valori poate fi fie simplă, fie destul de simplă procedura complexa, în funcție de atomi și de moleculele formate din aceștia. Mai mult, atomii unor elemente pot avea mai multe stări de oxidare. Din fericire, există reguli simple, lipsite de ambiguitate pentru a determina starea de oxidare pentru a le folosi cu încredere, o cunoaștere a elementelor de bază ale chimiei și algebrei este suficientă.

Pași

Partea 1

Determinarea stării de oxidare după legile chimiei

    Stabiliți dacă substanța în cauză este elementară. Starea de oxidare a atomilor din afara unui compus chimic este zero. Această regulă este valabilă atât pentru substanțele formate din atomi liberi individuali, cât și pentru cele care constau din două sau molecule poliatomice ale unui element.

    • De exemplu, Al(s) și Cl2 au o stare de oxidare de 0 deoarece ambele sunt într-o stare elementară nelegată chimic.
    • Vă rugăm să rețineți că forma alotropică a sulfului S8 sau octasulfur, în ciuda structurii sale atipice, este, de asemenea, caracterizată printr-o stare de oxidare zero.
  1. Determinați dacă substanța în cauză este formată din ioni. Starea de oxidare a ionilor este egală cu sarcina lor. Acest lucru este valabil atât pentru ionii liberi, cât și pentru cei care fac parte din compușii chimici.

    • De exemplu, starea de oxidare a ionului Cl - este -1.
    • Starea de oxidare a ionului Cl în compusul chimic NaCl este de asemenea -1. Deoarece ionul Na, prin definiție, are o sarcină de +1, concluzionăm că ionul Cl are o sarcină de -1 și astfel starea sa de oxidare este -1.
  2. Vă rugăm să rețineți că ionii metalici pot avea mai multe stări de oxidare. Atomii multor elemente metalice pot fi ionizați de marimi diferite. De exemplu, sarcina ionilor unui metal cum ar fi fierul (Fe) este +2 sau +3. Sarcina ionilor metalici (și starea lor de oxidare) poate fi determinată de sarcinile ionilor altor elemente cu care metalul face parte dintr-un compus chimic; în text această sarcină este indicată cu cifre romane: de exemplu, fierul (III) are o stare de oxidare de +3.

    • Ca exemplu, luați în considerare un compus care conține un ion de aluminiu. Sarcina totală a compusului AlCl3 este zero. Deoarece știm că ionii de Cl - au o sarcină de -1 și există 3 astfel de ioni în compus, pentru ca substanța în cauză să fie în general neutră, ionul de Al trebuie să aibă o sarcină de +3. Astfel, în în acest caz, Starea de oxidare a aluminiului este +3.
  3. Starea de oxidare a oxigenului este -2 (cu unele excepții).În aproape toate cazurile, atomii de oxigen au o stare de oxidare de -2. Există câteva excepții de la această regulă:

    • Dacă oxigenul se află în starea sa elementară (O2), starea sa de oxidare este 0, așa cum este cazul altor substanțe elementare.
    • Dacă este inclus oxigenul peroxid, starea sa de oxidare este -1. Peroxizii sunt un grup de compuși care conțin o legătură simplă oxigen-oxigen (adică anionul peroxid O 2 -2). De exemplu, în compoziția moleculei de H 2 O 2 (peroxid de hidrogen), oxigenul are o sarcină și o stare de oxidare de -1.
    • Atunci când este combinat cu fluor, oxigenul are o stare de oxidare de +2, citiți regula pentru fluor de mai jos.
  4. Hidrogenul are o stare de oxidare de +1, cu unele excepții. Ca și în cazul oxigenului, există și excepții aici. De obicei, starea de oxidare a hidrogenului este +1 (cu excepția cazului în care se află în starea elementară H2). Cu toate acestea, în compușii numiți hidruri, starea de oxidare a hidrogenului este -1.

    • De exemplu, în H2O starea de oxidare a hidrogenului este +1 deoarece atomul de oxigen are o sarcină -2 și sunt necesare două sarcini +1 pentru neutralitatea generală. Cu toate acestea, în compoziția hidrurii de sodiu, starea de oxidare a hidrogenului este deja -1, deoarece ionul Na poartă o sarcină de +1, iar pentru neutralitatea electrică generală, sarcina atomului de hidrogen (și, prin urmare, starea sa de oxidare) trebuie să fie egal cu -1.
  5. Fluor Mereu are o stare de oxidare de -1. După cum sa menționat deja, starea de oxidare a unor elemente (ioni de metal, atomi de oxigen din peroxizi etc.) poate varia în funcție de o serie de factori. Starea de oxidare a fluorului este însă invariabil -1. Acest lucru se explică prin faptul că acest element are cea mai mare electronegativitate - cu alte cuvinte, atomii de fluor sunt cei mai puțin dispuși să se despartă de proprii lor electroni și să atragă cel mai activ electronii străini. Astfel, taxa lor rămâne neschimbată.

  6. Suma stărilor de oxidare dintr-un compus este egală cu sarcina acestuia. Stările de oxidare ale tuturor atomilor incluși în component chimic, în total ar trebui să dea sarcina acestui compus. De exemplu, dacă un compus este neutru, suma stărilor de oxidare ale tuturor atomilor săi trebuie să fie zero; dacă compusul este un ion poliatomic cu o sarcină de -1, suma stărilor de oxidare este -1 și așa mai departe.

    • Acest metoda buna verificări - dacă suma stărilor de oxidare nu este egală cu sarcina totală a compusului, atunci ați greșit undeva.

    Partea 2

    Determinarea stării de oxidare fără a folosi legile chimiei
    1. Găsiți atomi care nu au reguli stricte privind numerele de oxidare. Pentru unele elemente nu există reguli bine stabilite pentru găsirea stării de oxidare. Dacă un atom nu se încadrează în niciuna dintre regulile enumerate mai sus și nu îi cunoașteți încărcătura (de exemplu, atomul face parte dintr-un complex și sarcina lui nu este specificată), puteți determina numărul de oxidare al unui astfel de atom prin eliminare. Mai întâi, determinați sarcina tuturor celorlalți atomi ai compusului și apoi, din încărcătura totală cunoscută a compusului, calculați starea de oxidare a unui atom dat.

      • De exemplu, în compusul Na 2 SO 4 sarcina atomului de sulf (S) este necunoscută - știm doar că nu este zero, deoarece sulful nu este în stare elementară. Această legătură servește bun exemplu pentru a ilustra metoda algebrică de determinare a stării de oxidare.
    2. Găsiți stările de oxidare ale elementelor rămase din compus. Folosind regulile descrise mai sus, determinați stările de oxidare ale atomilor rămași ai compusului. Nu uitați de excepțiile de la reguli în cazul atomilor de O, H și așa mai departe.

      • Pentru Na 2 SO 4, folosind regulile noastre, aflăm că sarcina (și, prin urmare, starea de oxidare) a ionului Na este +1, iar pentru fiecare dintre atomii de oxigen este -2.
    3. Găsiți numărul de oxidare necunoscut din sarcina compusului. Acum aveți toate datele pentru a calcula cu ușurință starea de oxidare dorită. Notați o ecuație, pe partea stângă a căreia va fi suma numărului obținut în pasul anterior de calcule și starea de oxidare necunoscută, iar în partea dreaptă - sarcina totală a compusului. Cu alte cuvinte, (Suma stărilor de oxidare cunoscute) + (starea de oxidare dorită) = (sarcina compusului).

      • În cazul nostru, soluția de Na 2 SO 4 arată astfel:
        • (Suma stărilor de oxidare cunoscute) + (starea de oxidare dorită) = (sarcina compusului)
        • -6 + S = 0
        • S = 0 + 6
        • S = 6. În Na 2 SO 4 sulful are stare de oxidare 6 .
    • În compuși, suma tuturor stărilor de oxidare trebuie să fie egală cu sarcina. De exemplu, dacă compusul este un ion diatomic, suma stărilor de oxidare ale atomilor trebuie să fie egală cu sarcina ionică totală.
    • Este foarte util să poți folosi tabelul periodic și să știi unde se află în el elementele metalice și nemetalice.
    • Starea de oxidare a atomilor în formă elementară este întotdeauna zero. Starea de oxidare a unui singur ion este egală cu sarcina acestuia. Elementele din grupa 1A a tabelului periodic, cum ar fi hidrogenul, litiul, sodiul, în forma lor elementară au o stare de oxidare de +1; Metalele din grupa 2A, cum ar fi magneziul și calciul, au o stare de oxidare de +2 în forma lor elementară. Oxigenul și hidrogenul, în funcție de tipul de legătură chimică, pot avea 2 sensuri diferite gradul de oxidare.

Electronegativitatea, ca și alte proprietăți ale atomilor elementelor chimice, se modifică periodic odată cu creșterea numărului atomic al elementului:

Graficul de mai sus arată periodicitatea modificărilor electronegativității elementelor principalelor subgrupe în funcție de numărul atomic al elementului.

La deplasarea în jos a unui subgrup al tabelului periodic, electronegativitatea elementelor chimice scade, iar atunci când se deplasează spre dreapta de-a lungul perioadei, crește.

Electronegativitatea reflectă nemetalicitatea elementelor: cu cât valoarea electronegativității este mai mare, cu atât elementul are mai multe proprietăți nemetalice.

Starea de oxidare

Cum se calculează starea de oxidare a unui element dintr-un compus?

1) Starea de oxidare a elementelor chimice din substanțele simple este întotdeauna zero.

2) Există elemente care prezintă o stare constantă de oxidare în substanțele complexe:

3) Există elemente chimice care prezintă o stare de oxidare constantă în marea majoritate a compușilor. Aceste elemente includ:

Element

Starea de oxidare în aproape toți compușii

Excepții

hidrogen H +1 Hidruri de metale alcaline și alcalino-pământoase, de exemplu:
oxigen O -2 Hidrogen și peroxizi metalici:

fluorura de oxigen -

4) Suma algebrică a stărilor de oxidare ale tuturor atomilor dintr-o moleculă este întotdeauna zero. Suma algebrică a stărilor de oxidare ale tuturor atomilor dintr-un ion este egală cu sarcina ionului.

5) Cea mai mare (maximă) stare de oxidare este egală cu numărul grupului. Excepții care nu se încadrează în această regulă sunt elementele din subgrupul secundar al grupului I, elementele din subgrupul secundar al grupului VIII, precum și oxigenul și fluorul.

Elemente chimice al căror număr de grup nu coincide cu cea mai mare stare de oxidare (obligatoriu de reținut)

6) Cea mai scăzută stare de oxidare a metalelor este întotdeauna zero, iar cea mai scăzută stare de oxidare a nemetalelor este calculată prin formula:

cea mai scăzută stare de oxidare a nemetalului = numărul grupului - 8

Pe baza regulilor prezentate mai sus, puteți stabili starea de oxidare element chimicîn orice substanță.

Găsirea stărilor de oxidare ale elementelor din diverși compuși

Exemplul 1

Determinați stările de oxidare ale tuturor elementelor din acidul sulfuric.

Soluţie:

Să scriem formula acidului sulfuric:

Starea de oxidare a hidrogenului în toate substanțele complexe este +1 (cu excepția hidrurilor metalice).

Starea de oxidare a oxigenului în toate substanțele complexe este -2 (cu excepția peroxizilor și a fluorurii de oxigen OF 2). Să aranjam stările de oxidare cunoscute:

Să notăm starea de oxidare a sulfului ca X:

Molecula de acid sulfuric, ca și molecula oricărei substanțe, este în general neutră din punct de vedere electric, deoarece suma stărilor de oxidare ale tuturor atomilor dintr-o moleculă este zero. Schematic, aceasta poate fi reprezentată după cum urmează:

Acestea. am obtinut urmatoarea ecuatie:

Hai sa o rezolvam:

Astfel, starea de oxidare a sulfului în acid sulfuric este +6.

Exemplul 2

Determinați starea de oxidare a tuturor elementelor din dicromat de amoniu.

Soluţie:

Să scriem formula dicromatului de amoniu:

Ca și în cazul precedent, putem aranja stările de oxidare ale hidrogenului și oxigenului:

Cu toate acestea, vedem că stările de oxidare a două elemente chimice simultan sunt necunoscute - azotul și cromul. Prin urmare, nu putem găsi stări de oxidare în mod similar cu exemplul anterior (o ecuație cu două variabile nu are o singură soluție).

Să atragem atenția asupra faptului că această substanță aparține clasei sărurilor și, în consecință, are o structură ionică. Apoi putem spune pe bună dreptate că compoziția dicromatului de amoniu include cationi NH 4 + (sarcina acestui cation poate fi văzută în tabelul de solubilitate). În consecință, deoarece unitatea de formulă a dicromatului de amoniu conține doi cationi NH 4 + încărcați individual pozitiv, sarcina ionului dicromat este egală cu -2, deoarece substanța în ansamblu este neutră din punct de vedere electric. Acestea. substanţa este formată din cationi NH 4 + şi anioni Cr 2 O 7 2-.

Cunoaștem stările de oxidare ale hidrogenului și oxigenului. Știind că suma stărilor de oxidare ale atomilor tuturor elementelor dintr-un ion este egală cu sarcina și notând stările de oxidare ale azotului și cromului ca XȘi yîn consecință, putem scrie:

Acestea. obținem două ecuații independente:

Rezolvând care, găsim XȘi y:

Astfel, în dicromatul de amoniu stările de oxidare ale azotului sunt -3, hidrogen +1, crom +6 și oxigen -2.

Cum se determină stările de oxidare ale elementelor în materie organicăîl poți citi.

Valenţă

Valența atomilor este indicată prin cifre romane: I, II, III etc.

Capacitățile de valență ale unui atom depind de cantitatea:

1) electroni nepereche

2) perechi de electroni singuri în orbitalii nivelurilor de valență

3) orbitali de electroni gol ai nivelului de valență

Posibilitățile de valență ale atomului de hidrogen

Să descriem formula grafică electronică a atomului de hidrogen:

S-a spus că trei factori pot influența posibilitățile de valență - prezența electronilor nepereche, prezența perechilor de electroni singuri la nivelul exterior și prezența orbitalilor liberi (goali). nivel extern. Vedem un electron nepereche la nivelul de energie exterior (și singurul). Pe baza acestui fapt, hidrogenul poate avea cu siguranță o valență de I. Cu toate acestea, în primul nivel de energie există un singur subnivel - s, acestea. Atomul de hidrogen de la nivelul exterior nu are nici perechi de electroni singuri, nici orbitali goali.

Astfel, singura valență pe care o poate prezenta un atom de hidrogen este I.

Posibilitățile de valență ale atomului de carbon

Să luăm în considerare structura electronică a atomului de carbon. În starea de bază, configurația electronică a nivelului său exterior este următoarea:

Acestea. în starea fundamentală la nivelul energetic exterior al atomului de carbon neexcitat există 2 electroni nepereche. În această stare poate prezenta o valență de II. Cu toate acestea, atomul de carbon intră foarte ușor într-o stare excitată atunci când îi este transmisă energie, iar configurația electronică a stratului exterior în acest caz ia forma:

În ciuda faptului că o anumită cantitate de energie este cheltuită pentru procesul de excitare a atomului de carbon, cheltuiala este mai mult decât compensată de formarea a patru legaturi covalente. Din acest motiv, valența IV este mult mai caracteristică atomului de carbon. Deci, de exemplu, carbonul cu valență IV în molecule are dioxid de carbon, acidul carbonic și absolut toate substanțele organice.

Pe lângă electronii nepereche și perechile de electroni singuri, prezența orbitalilor de nivel de valență vacante afectează și posibilitățile de valență. Prezența unor astfel de orbitali la nivelul umplut duce la faptul că atomul poate acționa ca un acceptor de perechi de electroni, adică. formează legături covalente suplimentare printr-un mecanism donor-acceptor. De exemplu, contrar așteptărilor, în moleculă monoxid de carbon Legătura CO nu este dublă, ci triplă, așa cum se arată clar în următoarea ilustrație:

Posibilitățile de valență ale atomului de azot

Să scriem formula grafică electronică pentru nivelul de energie externă al atomului de azot:

După cum se poate vedea din ilustrația de mai sus, atomul de azot în starea sa normală are 3 electroni nepereche și, prin urmare, este logic să presupunem că este capabil să prezinte o valență de III. Într-adevăr, se observă o valență de trei în moleculele de amoniac (NH 3), acid azotat (HNO 2), triclorura de azot (NCl 3) etc.

S-a spus mai sus că valența unui atom al unui element chimic depinde nu numai de numărul de electroni nepereche, ci și de prezența perechilor de electroni singuri. Acest lucru se datorează faptului că covalent legătură chimică poate fi format nu numai atunci când doi atomi se asigură reciproc cu un electron, ci și atunci când un atom având o pereche de electroni singuratică - donor () îl oferă altui atom cu un orbital de nivel de valență liber () (acceptor). Acestea. Pentru atomul de azot, valența IV este posibilă și datorită unei legături covalente suplimentare formate de mecanismul donor-acceptor. De exemplu, în timpul formării unui cation de amoniu sunt observate patru legături covalente, dintre care una este formată printr-un mecanism donor-acceptor:

În ciuda faptului că una dintre legăturile covalente se formează conform mecanismului donor-acceptor, toate Conexiuni N-Hîn cationul de amoniu sunt absolut identice și nu diferă în niciun fel unul de celălalt.

Atomul de azot nu este capabil să prezinte o valență egală cu V. Acest lucru se datorează faptului că este imposibil ca un atom de azot să treacă la o stare excitată, în care doi electroni sunt împerecheați cu tranziția unuia dintre ei la un orbital liber care este cel mai apropiat ca nivel de energie. Atomul de azot are nr d-subnivel, iar trecerea la orbitalul 3s este atât de costisitoare din punct de vedere energetic încât costurile energetice nu sunt acoperite prin formarea de noi legături. Mulți s-ar putea întreba, care este valența azotului, de exemplu, în moleculele de acid azotic HNO 3 sau oxidul de azot N 2 O 5? În mod ciudat, valența acolo este și IV, așa cum se poate vedea din următoarele formule structurale:

Linia punctată din ilustrație arată așa-numitul delocalizat π -conexiune. Din acest motiv, legăturile terminale NO pot fi numite „o legătură și jumătate”. Legături similare de una și jumătate sunt prezente și în molecula de ozon O 3, benzen C 6 H 6 etc.

Posibilitățile de valență ale fosforului

Să descriem formula grafică electronică a nivelului de energie externă al atomului de fosfor:

După cum vedem, structura stratului exterior al atomului de fosfor în starea fundamentală și a atomului de azot este aceeași și, prin urmare, este logic să ne așteptăm pentru atomul de fosfor, precum și pentru atomul de azot, valențe posibile egale cu I, II, III și IV, așa cum se observă în practică.

Cu toate acestea, spre deosebire de azot, atomul de fosfor are și el d-subnivel cu 5 orbitali liberi.

În acest sens, este capabil să treacă la o stare excitată, aburând electronii 3 s-orbitali:

Astfel, valența V pentru atomul de fosfor, care este inaccesibil la azot, este posibilă. De exemplu, atomul de fosfor are o valență de cinci în molecule de compuși precum acid fosforic, halogenuri de fosfor (V), oxid de fosfor (V) etc.

Posibilitățile de valență ale atomului de oxigen

Formula grafică electronică pentru nivelul de energie externă al unui atom de oxigen are forma:

Vedem doi electroni nepereche la al 2-lea nivel și, prin urmare, valența II este posibilă pentru oxigen. Trebuie remarcat faptul că această valență a atomului de oxigen se observă în aproape toți compușii. Mai sus, luând în considerare capacitățile de valență ale atomului de carbon, am discutat despre formarea moleculei de monoxid de carbon. Legătura din molecula de CO este triplă, prin urmare, oxigenul de acolo este trivalent (oxigenul este un donor de pereche de electroni).

Datorită faptului că atomul de oxigen nu are un extern d-subnivel, pereche de electroni sȘi p- orbitalii este imposibil, motiv pentru care capacitățile de valență ale atomului de oxigen sunt limitate în comparație cu alte elemente din subgrupul său, de exemplu, sulful.

Posibilitățile de valență ale atomului de sulf

Nivelul de energie extern al unui atom de sulf într-o stare neexcitată:

Atomul de sulf, ca și atomul de oxigen, are în mod normal doi electroni nepereche, deci putem concluziona că o valență de doi este posibilă pentru sulf. Într-adevăr, sulful are valența II, de exemplu, în molecula de hidrogen sulfurat H2S.

După cum vedem, atomul de sulf apare la nivel extern d-subnivel cu orbitali liberi. Din acest motiv, atomul de sulf este capabil să-și extindă capacitățile de valență, spre deosebire de oxigen, datorită trecerii la stările excitate. Astfel, la împerecherea unei perechi de electroni singuri 3 p-subnivelul pe care îl dobândeşte atomul de sulf configuratie electronica nivel extern de următoarea formă:

În această stare, atomul de sulf are 4 electroni nepereche, ceea ce ne spune că atomii de sulf pot prezenta o valență de IV. Într-adevăr, sulful are valență IV în moleculele SO 2 , SF 4 , SOCl 2 etc.

La împerecherea celei de-a doua perechi de electroni singuri situată la 3 s-subnivel, nivelul energetic extern capătă configurația:

În această stare devine posibilă manifestarea valenței VI. Exemple de compuși cu sulf VI-valent sunt SO 3 , H 2 SO 4 , SO 2 Cl 2 etc.

În mod similar, putem lua în considerare posibilitățile de valență ale altor elemente chimice.

Pentru a plasa corect stări de oxidare, trebuie să ții cont de patru reguli.

1) Într-o substanță simplă, starea de oxidare a oricărui element este 0. Exemple: Na 0, H 0 2, P 0 4.

2) Ar trebui să vă amintiți elementele care sunt caracteristice stări constante de oxidare. Toate sunt enumerate în tabel.


3) Cel mai înalt grad Oxidarea unui element, de regulă, coincide cu numărul grupului în care se află elementul (de exemplu, fosforul este în grupul V, cel mai mare s.d. al fosforului este +5). Excepții importante: F, O.

4) Căutarea stărilor de oxidare ale altor elemente se bazează pe regula simpla:

Într-o moleculă neutră, suma stărilor de oxidare ale tuturor elementelor este zero, iar într-un ion - sarcina ionului.

Câteva exemple simple pentru determinarea stărilor de oxidare

Exemplul 1. Este necesar să se găsească stările de oxidare ale elementelor din amoniac (NH 3).

Soluţie. Știm deja (vezi 2) că art. BINE. hidrogenul este +1. Rămâne de găsit această caracteristică pentru azot. Fie x starea de oxidare dorită. Creăm cea mai simplă ecuație: x + 3 (+1) = 0. Soluția este evidentă: x = -3. Răspuns: N-3H3+1.


Exemplul 2. Indicați stările de oxidare ale tuturor atomilor din molecula de H 2 SO 4.

Soluţie. Sunt deja cunoscute stările de oxidare ale hidrogenului și oxigenului: H(+1) și O(-2). Creăm o ecuație pentru a determina starea de oxidare a sulfului: 2 (+1) + x + 4 (-2) = 0. Rezolvând această ecuație, găsim: x = +6. Răspuns: H +1 2 S +6 O -2 4.


Exemplul 3. Calculați stările de oxidare ale tuturor elementelor din molecula de Al(NO 3) 3.

Soluţie. Algoritmul rămâne neschimbat. Compoziția „moleculei” de azotat de aluminiu include un atom de Al (+3), 9 atomi de oxigen (-2) și 3 atomi de azot, a căror stare de oxidare trebuie să o calculăm. Ecuația corespunzătoare este: 1 (+3) + 3x + 9 (-2) = 0. Răspuns: Al +3 (N +5 O -2 3) 3.


Exemplul 4. Determinați stările de oxidare ale tuturor atomilor din ionul (AsO 4) 3-.

Soluţie. În acest caz, suma stărilor de oxidare nu va mai fi egală cu zero, ci cu sarcina ionului, adică -3. Ecuația: x + 4 (-2) = -3. Răspuns: As(+5), O(-2).

Ce trebuie făcut dacă stările de oxidare a două elemente sunt necunoscute

Este posibil să se determine stările de oxidare ale mai multor elemente deodată folosind o ecuație similară? Dacă luăm în considerare aceasta sarcina Din punct de vedere matematic, răspunsul este nu. Ecuație liniară cu două variabile nu poate avea o soluție unică. Dar rezolvăm mai mult decât o ecuație!

Exemplul 5. Determinați stările de oxidare ale tuturor elementelor din (NH 4 ) 2 SO 4.

Soluţie. Sunt cunoscute stările de oxidare ale hidrogenului și oxigenului, dar sulful și azotul nu sunt. Un exemplu clasic de problemă cu două necunoscute! Vom considera sulfatul de amoniu nu ca o singură „moleculă”, ci ca o combinație de doi ioni: NH 4 + și SO 4 2-. Încărcăturile ionilor ne sunt cunoscute, fiecare dintre ele conține doar un atom cu o stare de oxidare necunoscută. Folosind experiența acumulată în rezolvarea problemelor anterioare, putem găsi cu ușurință stările de oxidare ale azotului și sulfului. Răspuns: (N-3H4+1)2S+6O4-2.

Concluzie: dacă o moleculă conține mai mulți atomi cu stări de oxidare necunoscute, încercați să „împarți” molecula în mai multe părți.

Cum să aranjezi stările de oxidare în compușii organici

Exemplul 6. Indicați stările de oxidare ale tuturor elementelor din CH 3 CH 2 OH.

Soluţie. Găsirea stărilor de oxidare în compusi organici are specificul ei. În special, este necesar să se găsească separat stările de oxidare pentru fiecare atom de carbon. Puteți raționa după cum urmează. Luați în considerare, de exemplu, atomul de carbon din gruparea metil. Acest atom de C este conectat la 3 atomi de hidrogen și un atom de carbon vecin. De Conexiuni S-N densitatea electronilor se deplasează spre atomul de carbon (deoarece electronegativitatea lui C depășește EO a hidrogenului). Dacă această deplasare ar fi completă, atomul de carbon ar dobândi o sarcină de -3.

Atomul de C din grupa -CH 2 OH este legat de doi atomi de hidrogen (o schimbare a densității electronilor către C), un atom de oxigen (o schimbare a densității electronilor către O) și un atom de carbon (se poate presupune că deplasarea în densitatea electronică în acest caz nu se întâmplă). Starea de oxidare a carbonului este -2 +1 +0 = -1.

Răspuns: C-3H+13C-1H+12O-2H+1.

Nu confundați conceptele de „valență” și „stare de oxidare”!

Numărul de oxidare este adesea confundat cu valența. Nu face această greșeală. Voi enumera principalele diferențe:

  • starea de oxidare are semn (+ sau -), valența nu;
  • starea de oxidare poate fi zero chiar și într-o substanță complexă, valență egală cu zero înseamnă, de regulă, că un atom al unui element dat nu este conectat la alți atomi (nu vom discuta despre niciun fel de compuși de incluziune și alte „exotice”; Aici);
  • starea de oxidare este un concept formal care capătă sens real numai în legătură cu legături ionice, conceptul de „valență”, dimpotrivă, este cel mai convenabil aplicat în raport cu compușii covalenți.

Starea de oxidare (mai precis, modulul său) este adesea egală numeric cu valența, dar și mai des aceste valori NU coincid. De exemplu, starea de oxidare a carbonului din CO2 este +4; valența lui C este de asemenea egală cu IV. Dar în metanol (CH 3 OH), valența carbonului rămâne aceeași, iar starea de oxidare a lui C este egală cu -1.

Un scurt test pe tema „Starea de oxidare”

Acordați câteva minute pentru a verifica înțelegerea dvs. despre acest subiect. Trebuie să răspunzi la cinci întrebări simple. Noroc!

Cursul video „Obțineți un A” include toate subiectele de care aveți nevoie finalizarea cu succes Examenul de stat unificat la matematică pentru 60-65 de puncte. Complet toate sarcinile 1-13 ale Examenului de stat Profil unificat la matematică. De asemenea, potrivit pentru promovarea examenului de stat unificat de bază la matematică. Dacă vrei să promovezi examenul de stat unificat cu 90-100 de puncte, trebuie să rezolvi partea 1 în 30 de minute și fără greșeli!

Curs de pregătire pentru Examenul Unificat de Stat pentru clasele 10-11, precum și pentru profesori. Tot ce aveți nevoie pentru a rezolva partea 1 a examenului de stat unificat la matematică (primele 12 probleme) și problema 13 (trigonometrie). Și asta înseamnă mai mult de 70 de puncte la examenul de stat unificat și nici un student cu 100 de puncte, nici un student la științe umaniste nu se pot descurca fără ele.

Toată teoria necesară. Căi rapide soluții, capcane și secrete ale examenului de stat unificat. Au fost analizate toate sarcinile curente ale părții 1 din Banca de activități FIPI. Cursul respectă pe deplin cerințele Examenului de stat unificat 2018.

Cursul conține 5 subiecte mari, câte 2,5 ore fiecare. Fiecare subiect este dat de la zero, simplu și clar.

Sute de sarcini de examen de stat unificat. Probleme cu cuvinte și teoria probabilității. Algoritmi simpli și ușor de reținut pentru rezolvarea problemelor. Geometrie. Teorie, material de referinta, analiza tuturor tipurilor de sarcini de examinare unificată de stat. Stereometrie. Soluții complicate, cheat sheets utile, dezvoltarea imaginației spațiale. Trigonometrie de la zero la problema 13. Înțelegerea în loc de înghesuială. Explicații clare ale conceptelor complexe. Algebră. Rădăcini, puteri și logaritmi, funcție și derivată. O bază pentru rezolvarea problemelor complexe din partea 2 a examenului de stat unificat.