Зависимость расхода воды от давления и диаметра трубы. Как посчитать пропускную способность трубы для разных систем – примеры и правила. Подходящая скорость жидкости, в зависимости от вида трубопровода

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина). Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Труба - это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах. Также используется такая величина как условный диаметр или условный проход - номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN). Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д. Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов. Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды. В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования. Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы. И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды. Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования. Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности. Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды. В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб. Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости. Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

Re = (v·L·ρ)/μ

где:
ρ — плотность жидкости;
v — скорость потока;
L — характерная длина элемента потока;
μ - динамический коэффициент вязкости.

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re<2300 наблюдается так называемый ламинарный поток, при котором жидкость движется тонкими слоями, почти не смешивающимися друг с другом, при этом наблюдается постепенное увеличение скорости потока по направлению от стенок трубы к ее центру. Дальнейшее увеличение числа Рейнольдса приводит к дестабилизации такой структуры потока, и значениям 23004000 наблюдается уже устойчивый режим, характеризуемый беспорядочным изменением скорости и направления потока в каждой отдельной его точке, что в сумме дает выравнивание скоростей потока по всему объему. Такой режим называется турбулентным. Число Рейнольдса зависит от задаваемого насосом напора, вязкости среды при рабочей температуре, а также размерами и формой сечения трубы, через которую проходит поток.

Профиль скоростей в потоке
ламинарный режим переходный режим турбулентный режим
Характер течения
ламинарный режим переходный режим турбулентный режим

Критерий Рейнольдса является критерием подобия для течения вязкой жидкости. То есть с его помощью возможно моделирование реального процесса в уменьшенном размере, удобном для изучения. Это крайне важно, поскольку зачастую бывает крайне сложно, а иногда и вовсе невозможно изучать характер потоков жидкости в реальных аппаратах из-за их большого размера.

Расчет трубопровода. Расчет диаметра трубопровода

Если трубопровод не теплоизолированный, то есть возможен обмен тепла между перемещаемой и окружающей средой, то характер потока в нем может изменяться даже при постоянной скорости (расходе). Такое возможно, если на входе перекачиваемая среда имеет достаточно высокую температуру и течет в турбулентном режиме. По длине трубы температура перемещаемой среды будет падать вследствие тепловых потерь в окружающую среду, что может повлечь за собой смену режима потока на ламинарный или переходный. Температура, при которой происходит смена режима, называется критической температурой. Значение вязкости жидкости напрямую зависит от температуры, поэтому для подобных случаев используют такой параметр как критическая вязкость, соответствующая точке смены режима потока при критическом значении критерия Рейнольдса:

v кр = (v·D)/Re кр = (4·Q)/(π·D·Re кр)

где:
ν кр - критическая кинематическая вязкость;
Re кр - критическое значение критерия Рейнольдса;
D - диаметр трубы;
v - скорость потока;
Q - расход.

Еще одним важным фактором является трение, возникающее между стенками трубы и движущимся потоком. При этом коэффициент трения во многом зависит от шероховатости стенок трубы. Взаимосвязь между коэффициентом трения, критерием Рейнольдса и шероховатостью устанавливается диаграммой Муди, позволяющей определить один из параметров, зная два других.


Формула Коулбрука-Уайта также применяется для вычисления коэффициента трения турбулентного потока. На основании этой формулы возможно построение графиков, по которым устанавливается коэффициент трения.

(√λ ) -1 = -2·log(2,51/(Re·√λ ) + k/(3,71·d))

где:
k - коэффициент шероховатости трубы;
λ - коэффициент трения.

Существуют также и другие формулы приблизительного расчета потерь на трение при напорном течении жидкости в трубах. Одним из наиболее часто используемых уравнений в этом случае считается уравнение Дарси-Вейсбаха. Оно основывается на эмпирических данных и используется в основном при моделировании систем. Потери на трение - это функция скорости жидкости и сопротивления трубы движению жидкости, выражаемой через значение шероховатости стенок трубопровода.

∆H = λ · L/d · v²/(2·g)

где:
ΔH - потери напора;
λ - коэффициент трения;
L - длина участка трубы;
d - диаметр трубы;
v - скорость потока;
g - ускорение свободного падения.

Потеря давления вследствие трения для воды рассчитывают по формуле Хазена — Вильямса.

∆H = 11,23 · L · 1/С 1,85 · Q 1,85 /D 4,87

где:
ΔH - потери напора;
L - длина участка трубы;
С - коэффициент шероховатости Хайзена-Вильямса;
Q - расход;
D - диаметр трубы.

Давление

Рабочее давление трубопровода - это набольшее избыточное давление, обеспечивающее заданный режим работы трубопровода. Решение о размере трубопровода и количестве насосных станций обычно принимается, опираясь на рабочее давление труб, производительность насоса и расходы. Максимальное и минимальное давление трубопровода, а также свойства рабочей среды, определяют расстояние между насосными станциями и требуемую мощность.

Номинальное давление PN - номинальная величина, соответствующая максимальному давлению рабочей среды при 20 °C, при котором возможна продолжительная эксплуатация трубопровода с заданными размерами.

При увеличении температуры нагрузочная способность трубы понижается, как и допустимое избыточное давление вследствие этого. Значение pe,zul показывает максимальное давление (изб) в трубопроводной системе при увеличении рабочей температуры.

График допустимых избыточных давлений:


Расчет падения давления в трубопроводе

Расчет падения давления в трубопроводе производят по формуле:

∆p = λ · L/d · ρ/2 · v²

где:
Δp - перепад давления на участке трубы;
L - длина участка трубы;
λ - коэффициент трения;
d - диаметр трубы;
ρ - плотность перекачиваемой среды;
v - скорость потока.

Транспортируемые рабочие среды

Чаще всего трубы используют для транспортировки воды, но также их могут применять для перемещения шлама, суспензий, пара и т.д. В нефтяной отрасли трубопроводы служат для перекачивания широкого спектра углеводородов и их смесей, сильно отличающихся по химическим и физическим свойствам. Сырая нефть может транспортироваться на больше расстояния от месторождений на суше или нефтяных вышек на шельфе до терминалов, промежуточных точек и НПЗ.

По трубопроводам также передают:

  • продукты нефтепереработки, такие как бензин, авиационное топливо, керосин, дизельное топливо, мазут и др.;
  • нефтехимическое сырье: бензол, стирол, пропилен и т.д.;
  • ароматические углеводороды: ксилол, толуол, кумол и т.д.;
  • сжиженное нефтяное топливо, такое как сжиженный природный газ, сжиженный нефтяной газ, пропан (газы со стандартной температурой и давлением, но подвергнутые сжижению с применением давления);
  • углекислый газ, жидкий аммиак (транспортируются как жидкости под действием давления);
  • битум и вязкое топливо слишком вязкое для транспортировки по трубопроводам, поэтому используются дистиллятные фракции нефти для разжижения этого сырья и получения в результате смеси, которую можно транспортировать посредством трубопровода;
  • водород (на небольшие расстояния).

Качество транспортируемой среды

Физические свойства и параметры транспортируемых сред во многом определяют проектные и рабочие параметры трубопровода. Удельный вес, сжимаемость, температура, вязкость, точка застывания и давление паров - основные параметры рабочей среды, которые необходимо учитывать.

Удельный вес жидкости - это ее вес на единицу объема. Многие газы транспортируются по трубопроводам под повышенным давлением, а при достижении определенного давления некоторые газы даже могут подвергаться сжижению. Поэтому степень сжатия среды является критичным параметром для проектирования трубопроводов и определения пропускной производительности.

Температура косвенно и напрямую оказывает влияние на производительность трубопровода. Это выражается в том, что жидкость увеличивается в объеме после увеличения температуры, при условии, что давление остается постоянным. Понижение температуры может также оказать влияние как на производительность так и на общий КПД системы. Обычно, когда температура жидкости понижается, это сопровождается увеличением ее вязкости, что создает дополнительное сопротивление трения по внутренней стенке трубы, требуя больше энергии для перекачивания одинакового количетсва жидкости. Очень вязкие среды чувствительны к перепадам рабочих температур. Вязкость представляет собой сопротивляемость среды течению и измеряется в сантистоксах сСт. Вязкость определяет не только выбор насоса, но также расстояние между насосными станциями.

Как только температура среды опускается ниже точки потери текучести, эксплуатация трубопровода становится невозможной, и для возобновления его функционирования предпринимаются некоторые опции:

  • нагревание среды или теплоизоляция труб для поддержания рабочей температуры среды выше ее точки текучести;
  • изменение химического состава среды перед попаданием в трубопровод;
  • разбавление перемещаемой среды водой.

Типы магистральных труб

Магистральные трубы изготавливают сварными или бесшовными. Бесшовные стальные трубы изготавливают без продольных сварных швов стальными отрезками с тепловой обработкой для достижения желаемого размера и свойств. Сварная труба изготавливается при использовании нескольких производственных процессов. Эти два типа отличаются друг от друга количеством продольных швов в трубе и типом используемого сварочного оборудования. Стальная сварная труба - наиболее часто используемый тип в нефтехимической области применения.

Каждый отрезок труб соединяют сварными секциями вместе для формирования трубопровода. Также в магистральных трубопроводах в зависимости от области применения используют трубы, изготовленные из стекловолокна, разнообразного пластика, асбоцемента и т.д.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

колено 90° отвод 90° переходное ответвление разветвление
колено 180° отвод 30° переходной штуцер наконечник

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

сварное фланцевое резьбовое муфтовое

Температурное удлинение трубопровода

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры. Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб. Усилия в закрепленном трубопроводе при колебаниях температур могут привысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопровода как в материале труб, так и во фланцевых соединениях. Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или дргуих элементов.

Расчет размеров трубопровода при изменении температуры

Расчет изменения линейных размеров трубопровода при изменении температуры производят по формуле:

∆L = a·L·∆t

a - коэффициент температурного удлинения, мм/(м°C) (см. таблицу ниже);
L - длина трубопровода (расстояние между неподвижными опорами), м;
Δt - разница между макс. и мин. температурой перекачиваемой среды, °С.

Таблица линейного расширения труб из различных материалов

Приведенные числа представляют собой средние показатели для перечисленных материалов и для расчета трубопровода из иных материалов данные из этой таблицы не должны браться за основу. При расчете трубопровода рекомендуется использовать коэффициент линейного удлинения, указываемый заводом-изготовителем трубы в сопровождающей технической спецификации или техпаспорте.

Температурное удлинение трубопроводов устраняют как применением специальных компенсационных участков трубопровода, так и при помощи компенсаторов, которые могут состоять из упругих или подвижных частей.

Компенсационные участки состоят из упругих прямых частей трубопровода, расположенных перпендикулярно друг к другу и крепящихся при помощи отводов. При температурном удлинении увеличение одной части компенсируется деформацией изгиба другой части на плоскости или деформацией изгиба и кручения в пространстве. Если трубопровод сам компенсирует температурное расширение, то это называется самокомпенсацией.

Компенсация происходит также и благодаря эластичным отводам. Часть удлинения компенсируется эластичностью отводов, другую часть устраняют за счет упругих свойств материала участка, находящегося за отводом. Компенсаторы устанавливают там, где не возможно использование компенсирующих участков или когда самокомпенсация трубопровода недостаточна.

По конструктивному исполнению и принципу работы компенсаторы бывают четырех видов: П-образные, линзовые, волнистые, сальниковые. На практике довольно часто применяются плоские компенсаторы с L-, Z- или U-образной формой. В случае пространственных компенсаторов, они представляют собой обычно 2 плоских взаимно перпендикулярных участка и имеют одно общее плечо. Эластичные компенсаторы производят из труб или эластичных дисков, либо сильфонов.

Определение оптимального размера диаметра трубопроводов

Оптимальный диаметр трубопровода может быть найден на основе технико-экономических расчетов. Размеры трубопровода, включая размеры и функциональные возможности различных компонентов, а также условия, при которых должна происходить эксплуатация трубопровода, определяет транспортирующая способность системы. Трубы большего размера подходят для более интенсивного массового потока среды при условии, что другие компоненты в системы подобраны и рассчитаны под эти условия надлежащим образом. Обычно, чем длиннее отрезок магистральной трубы между насосными станциями, тем требуется больший перепад давления в трубопроводе. Кроме того, изменение физических характеристик перекачиваемой среды (вязкость и т.д.), также может оказать большое влияние на давление в магистрали.

Оптимальный размер - наименьший из подходящих размеров трубы для конкретного применения, экономически эффективный на протяжении всего срока службы системы.

Формула для расчета производительности трубы:

Q = (π·d²)/4 · v

Q - расход перекачиваемой жидкости;
d - диаметр трубопровода;
v - скорость потока.

На практике для расчета оптимального диаметра трубопровода используют значения оптимальных скоростей перекачиваемой среды, взятые из справочных материалов, составленных на основе опытных данных:

Перекачиваемая среда Диапазон оптимальных скоростей в трубопроводе, м/с
Жидкости Движение самотеком:
Вязкие жидкости 0,1 - 0,5
Маловязкие жидкости 0,5 - 1
Перекачивание насосом:
Всасывающая сторона 0,8 - 2
Нагнетательная сторона 1,5 - 3
Газы Естественная тяга 2 - 4
Малое давление 4 - 15
Большое давление 15 - 25
Пары Перегретый пар 30 - 50
Насыщенный пар под давлением:
Более 105 Па 15 - 25
(1 - 0,5) · 105 Па 20 - 40
(0,5 - 0,2) · 105 Па 40 - 60
(0,2 - 0,05) · 105 Па 60 - 75

Отсюда получаем формулу для расчета оптимального диаметра трубы:

d о = √((4·Q) / (π·v о ))

Q - заданный расход перекачиваемой жидкости;
d - оптимальный диаметр трубопровода;
v - оптимальная скорость потока.

При высокой скорости потока обычно применяют трубы меньшего диаметра, что означает снижение затрат на закупку трубопровода, его техническое обслуживание и монтажные работы (обозначим K 1). При увеличении скорости происходит возрастание потерь напора на трение и в местных сопротивлениях, что приводит к увеличению затрат на перекачку жидкости (обозначим K 2).

Для трубопроводов больших диаметров затраты K 1 будут выше, а расходы во время эксплуатации K 2 ниже. Если сложить значения K 1 и K 2 , то получим общие минимальные затраты K и оптимальный диаметр трубопровода. Затраты K 1 и K 2 в этом случае приведены в один и тот же временной промежуток.

Расчет (формула) капитальных затрат для трубопровода

K 1 = (m·C M ·K M)/n

m - масса трубопровода, т;
C M - стоимость 1 т, руб/т;
K M - коэффициент, повышающий стоимость монтажных работ, например 1,8;
n - срок службы, лет.

Указанные затраты на эксплуатацию, связанны с потреблением энергии:

K 2 = 24·N·n дн ·C Э руб/год

N - мощность, кВт;
n ДН - кол-во рабочих дней в году;
С Э - затраты на один кВт-ч энергии, руб/кВт *ч.

Формулы для определения размеров трубопровода

Пример общих формул по определению размера труб без учета возможных дополнительных факторов воздействия, таких как эрозия, взвешенные твердые частицы и прочее:

Наименование Уравнение Возможные ограничения
Поток жидкости и газа под давлением
Потеря напора на трение
Дарси-Вейсбаха

d = 12·[(0,0311·f·L·Q 2)/(h f)] 0,2

Q - объемный расход, гал/мин;
d - внутренний диаметр трубы;
hf - потеря напора на трение;
L - длина трубопровода, футы;
f - коэффициент трения;
V - скорость потока.
Уравнение общего потока жидкости

d = 0,64·√(Q/V)

Q - объемный расход, гал/мин
Размер всасывающей линии насоса для ограничения потерь напора на трение

d = √(0,0744·Q)

Q - объемный расход, гал/мин
Уравнение общего потока газа

d = 0,29·√((Q·T)/(P·V))

Q - объемный расход, фут³/мин
T - температура, K
Р - давление фунт/дюйм² (абс);
V - скорость
Поток самотеком
Уравнение Маннинга для расчета диаметра трубы для максимального потока

d = 0,375

Q - объемный расход;
n - коэффициент шероховатости;
S - уклон.
Число Фруда соотношение силы инерции и силы тяжести

Fr = V / √[(d/12) · g]

g - ускорение свободного падения;
v - скорость течения;
L - длину трубы или диаметр.
Пар и испарение
Уравнение определения диаметра трубы для пара

d = 1,75·√[(W·v_g·x) / V]

W - массовый расход;
Vg - удельный объём насыщенного пара;
x - качество пара;
V - скорость.

Оптимальная скорость потока для различных трубопроводных систем

Оптимальный размер трубы выбирается из условия минимальных затрат на перекачивание среды по трубопроводу и стоимости труб. Однако необходимо учитывать также ограничения по скорости. Иногда, размер трубопроводной линии должен соответствовать требованиям технологического процесса. Так же часто размер трубопровода связан с перепадом давления. В предварительных проектных расчетах, где потери давления не учитываются, размер технологического трубопровода определяется по допустимой скорости.

Если в трубопроводе имеются изменения в направлении потока, то это приводит к значительному увеличению местных давлений на поверхности перпендикулярно направлению потока. Такого рода увеличение - функция скорости жидкости, плотности и исходного давления. Так как скорость обратно пропорциональна диаметру, высокоскоростные жидкости требуют особого внимания при выборе размера и конфигурации трубопровода. Оптимальный размер трубы, например, для серной кислоты ограничивает скорость среды до значения, при котором не допускается эрозия стенок в трубных коленах, чтобы таким образом не допустить повреждения структуры трубы.

Поток жидкости самотеком

Расчет размера трубопровода в случае потока, движущегося самотеком, достаточно сложен. Характер движения при такой форме потока в трубе может быть однофазным (полная труба) и двухфазным (частичное заполнение). Двухфазный поток образуется в том случае, когда в трубе одновременно присутствуют жидкость и газ.

В зависимости от соотношения жидкости и газа, а также их скоростей, режим двухфазного потока может варьироваться от пузырькового до дисперсного.

пузырьковый поток (горизонтальный) снарядный поток (горизонтальный) волновой поток дисперсный поток

Движущую силу для жидкости при движении самотеком обеспечивает разность высот начальной и конечной точек, причем обязательным условием является расположение начальной точки выше конечной. Иными словами разность высот определяет разность потенциальной энергии жидкости в этих положениях. Этот параметр также учитывается при подборе трубопровода. Помимо этого на величину движущей силы влияют значения давлений в начальной и конечной точке. Увеличение перепада давления влечет за собой увеличение скорости потока жидкости, что, в свою очередь, позволяет подбирать трубопровод меньшего диаметра, и наоборот.

В случае если конечная точка подсоединена к системе под давлением, например дистилляционной колонне, необходимо вычесть эквивалентное давление из имеющейся разницы в высоте, чтобы оценить реально создаваемое эффективное дифференциальное давление. Также если начальная точка трубопровода будет под вакуумом, то его влияние на общее дифференциальное давление также должно быть учтено при выборе трубопровода. Окончательный подбор труб осуществляется с использованием дифференциального давления, учитывающего все вышеперечисленные факторы, а не основывается только лишь на перепаде высот начальной и конечной точки.

Поток горячей жидкости

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример - явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса. Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода. Возникающая парогазовая смесь создает препятствие прохождению потока и может вызвать повреждения трубопровода, что делает явление кавитации крайне нежелательным при эксплуатации трубопровода.

Обводной трубопровод для оборудования/приборов

Оборудование и приборы, особенно те, которые могут создавать значительные перепады давления, то есть теплообменники, регулирующие клапаны и прочее, оснащают обводными трубопроводами (для возможности не прерывать процесс даже во время технических работ по обслуживанию). Такие трубопроводы обычно имеют 2 отсечных клапана, установленных в линию установки, и клапан, регулирующий поток параллельно к этой установке.

При нормальной работе поток жидкости, проходя через основные узлы аппарата, испытывает дополнительное падение давления. В соответствии с этим рассчитывается давление нагнетания для него, создаваемое подсоединенным оборудованием, например центробежным насосом. Насос подбирается на основе общего перепада давления в установке. Во время движения по обводному трубопроводу этот дополнительный перепад давления отсутствует, в то время как работающий насос нагнетает поток прежней силы, согласно своим рабочим характеристикам. Чтобы избежать различия в характеристиках потока через аппарат и обводную линию, рекомендуется использовать обводную линию меньшего размера с регулировочным клапаном, чтобы создать давление, эквивалентное основной установке.

Линия отбора проб

Обычно небольшое количество жидкости отбирается для анализа, чтобы определить ее состав. Отбор может производиться на любой стадии процесса для определения состава сырья, промежуточного продукта, готового продукта или же просто транспортируемого вещества, такого как сточные воды, теплоноситель и т.д. Размер участка трубопровода, на котором происходит отбор проб, обычно зависит от типа анализируемой рабочей среды и расположения точки отбора пробы.

Например, для газов в условиях повышенного давления достаточно небольших трубопроводов с клапанами для отбора нужного количества образцов. Увеличение диаметра линии отбора проб позволит снизить долю отбираемой для анализа среды, но такой отбор становится сложнее контролировать. В то же время небольшая линия отбора проб плохо подходит для анализа различных суспензий, в которых твердые частицы могут забивать проточную часть. Таким образом, размер лини отбора проб для анализа суспензий во многом зависит от размера твердых частиц и характеристик среды. Аналогичные выводы применимы и к вязким жидкостям.

При подборе размера трубопровода для отбора проб обычно учитывают:

  • характеристики жидкости, предназначенной для отбора;
  • потери рабочей среды при отборе;
  • требования безопасности во время отбора;
  • простота эксплуатации;
  • расположение точки отбора.

Циркуляция охлаждающей жидкости

Для трубопроводов с циркулирующей охлаждающей жидкостью предпочтительны высокие скорости. В основном это объясняется тем, что охлаждающая жидкость в охладительной башне подвергается воздействию солнечного света, что создает условия для образования водорослесодержащего слоя. Часть этого водорослесодержащего объема попадает в циркулирующую охлаждающую жидкость. При низкой скорости потока водоросли начинают расти в трубопроводе и через некоторое время создают трудности для циркуляции охлаждающей жидкости или ее прохода в теплообменник. В этом случае рекомендуется высокая скорость циркуляции во избежание образования водорослевых заторов в трубопроводе. Обычно использование интенсивно циркулирующей охлаждающей жидкости встречается в химической промышленности, для чего требуются трубопроводы больших размеров и длины, чтобы обеспечить питание различных теплообменных аппаратов.

Переполнение резервуара

Резервуары оснащают трубами для перелива по следующим причинам:

  • избегание потери жидкости (избыток жидкости поступает в другой резервуар, а не выливается за пределы изначального резервуара);
  • недопущение утечек нежелательных жидкостей за пределы резервуара;
  • поддержание уровня жидкости в резервуарах.

Во всех вышеупомянутых случаях трубы для перелива рассчитаны на максимально допустимый поток жидкости, поступающий в резервуар, независимо от расхода жидкости на выходе. Другие принципы подбора труб аналогичны подбору трубопроводов для самотечных жидкостей, то есть в соответствии с наличием доступной вертикальной высоты между начальной и конечной точкой трубопровода перелива.

Самая высокая точка трубы перелива, которая также является его начальной точкой, находится в месте подсоединения к резервуару (патрубок перелива резервуара) обычно почти на самом верху, а самая низкая конечная точка может быть около сливного желоба почти у самой земли. Однако линия перелива может заканчиваться и на более высокой отметке. В этом случае имеющийся дифференциальный напор будет ниже.

Поток шлама

В случае горной промышленности, руда обычно добывается в труднодоступных участках. В таких местах, как правило, нет железнодорожного или дорожного сообщения. Для таких ситуаций гидравлическая транспортировка сред с твердыми частицами рассматривается как наиболее приемлемая, в том числе и в случае расположения горноперерабатывающих установок на достаточном удалении. Шламовые трубопроводы используются в различных промышленных областях для транспортировки твердых сред в дробленом виде вместе с жидкостью. Такие трубопроводы зарекомендовали себя как наиболее экономически выгодные по сравнению с другими методами транспортировки твердых сред в больших объемах. Помимо этого к их преимуществам можно отнести достаточную безопасность из-за отсутствия нескольких видов транспортировки и экологичность.

Суспензии и смеси взвешенных веществ в жидкостях хранятся в состоянии периодического перемешивания для поддержания однородности. В противном случае происходит процесс расслоения, при котором взвешенные частицы, в зависимости от их физических свойств, всплывают на поверхность жидкости или оседают на дно. Перемешивание обеспечивается благодаря оборудованию, такому как резервуар с мешалкой, в то время как в трубопроводах, это достигается за счет поддержания турбулентных условий движения потока среды.

Снижение скорости потока при транспортировке взвешенных в жидкости частиц не желательно, так как в потоке может начаться процесс разделения фаз. Это может привести к закупориванию трубопровода и изменению концентрации транспортируемого твердого вещества в потоке. Интенсивному перемешиванию в объеме потока способствует турбулентный режим течения.

С другой стороны, чрезмерное уменьшение размеров трубопровода также часто приводит к его закупорке. Поэтому выбор размера трубопровода - это важный и ответственный шаг, требующий предварительного анализа и расчетов. Каждый случай должен рассматриваться индивидуально, поскольку различные шламы ведут себя по-разному на различных скоростях жидкости.

Ремонт трубопроводов

В ходе эксплуатации трубопровода в нем могут возникать различного рода утечки, требующие немедленного устранения для поддержания работоспособности сисетмы. Ремонт магистрального трубопровода может быть осуществлен несколькими способами. Это может быть как замена целого сегмента трубы или небольшого участка, в котором возникла утечка, так и наложение заплатки на существующую трубу. Но прежде чем выбрать какой-либо способ ремонта необходимо провести тщательное изучение причины возникновения утечки. В отдельных случаях может потребоваться не просто ремонт, а смена маршрута трубы для предотвращения повторного ее повреждения.

Первым этапом ремонтных работ является определение местоположения участка трубы, требующего вмешательства. Далее в зависимости от типа трубопровода определяется перечень необходимого оборудования и мероприятий, необходимых для устранения утечки, а также проводится сбор необходимых документов и разрешений, если подлежащий ремонту участок трубы находится на территории другого собственника. Так как большинство труб расположено под землей, может возникнуть необходимость извлечения части трубы. Далее покрытие трубопровода проверяется на общее состояние, после чего часть покрытия удаялется для проведения ремонтных работ непосредсвтенно с трубой. После ремонта могут быть проведены различные проверочные мероприятия: ультразвуковое испытание, цветная дефектоскопия, магнитно-порошковая дефектоскопия и т.п.

Хотя некоторые ремонтные работы требуют полного отключения трубопровода, часто бывает достаточно только временного перерыва в работе для изолирования ремонтируемого участка или подготовки обводного пути. Однако в большенстве случаев ремонтные работы проводят при полном отключении трубопровода. Изолирование участка трубопровода может осуществляться с помощью заглушек или отсечных клапанов. Далее устанавливают необходимое оборудование и осуществляют непосредственно ремонт. Ремонтные работы проводят на поврежденном участке, освобожденном от среды и без давления. По окончании ремонта заглушки открывают и восстанавливают целостность трубопровода.

Для того чтобы правильно смонтировать конструкцию водопровода, начиная разработку и планирование системы, необходимо рассчитать расход воды через трубу.

От полученных данных зависят основные параметры домашнего водовода.

В этой статье читатели смогут познакомиться с основными методиками, которые помогут им самостоятельно выполнить расчет своей водопроводной системы.

Цель расчета диаметра трубопровода по расходу: Определение диаметра и сечения трубопровода на основе данных о расходе и скорости продольного перемещения воды.

Выполнить такой расчет достаточно сложно. Нужно учесть очень много нюансов, связанных с техническими и экономическими данными. Эти параметры взаимосвязаны между собой. Диаметр трубопровода зависит от вида жидкости, которая будет по нему перекачиваться.

Если увеличить скорость движения потока можно уменьшить диаметр трубы. Автоматически снизится материалоемкость. Смонтировать такую систему будет намного проще, упадет стоимость работ.

Однако увеличение движения потока вызовет потери напора, которые требуют создание дополнительной энергии, для перекачки. Если очень сильно ее уменьшить, могут появиться нежелательные последствия.

Когда выполняется проектирование трубопровода, в большинстве случаев, сразу задается величина расхода воды. Неизвестными остаются две величины:

  • Диаметр трубы;
  • Скорость потока.

Сделать полностью технико-экономический расчет очень сложно. Для этого нужны соответствующие инженерные знания и много времени. Чтобы облегчить такую задачу при расчете нужного диаметра трубы, пользуются справочными материалами. В них даются значения наилучшей скорости потока, полученные опытным путем.

Итоговая расчетная формула для оптимального диаметра трубопровода выглядит следующим образом:

d = √(4Q/Πw)
Q – расход перекачиваемой жидкости, м3/с
d – диаметр трубопровода, м
w – скорость потока, м/с

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Скорость воды в трубопроводе формула

Объёмный расход V (60м³/час или 60/3600м³/сек) рассчитывается как произведение скорости потока w на поперечное сечение трубы S (а поперечное сечение в свою очередь считается как S=3.14 d²/4): V = 3.14 w d²/4. Отсюда получаем w = 4V/(3.14 d²). Не забудьте перевести диаметр из миллиметров в метры, то есть диаметр будет 0.159 м.

Формула расхода воды

В общем случае методология измерения расхода воды в реках и трубопроводах основана на упрощённой форме уравнения непрерывности, для несжимаемых жидкостей:

Расход воды через трубу таблица

Зависимость расхода от давления

Нет такой зависимости расхода жидкости от давления, а есть - от перепада давления. Формула выводится просто. Имеется общепринятое уравнение перепада давления при течении жидкости в трубе Δp = (λL/d) ρw²/2, λ — коэффициент трения (ищется в зависимости от скорости и диаметра трубы по графикам или соответствующим формулам), L — длина трубы, d — ее диаметр, ρ -плотность жидкости, w — скорость. С другой стороны, есть определение расхода G = ρwπd²/4. Выражаем из этой формулы скорость, подставляем ее в первое уравнение и находим зависимость расхода G = π SQRT(Δp d^5/λ/L)/4, SQRT - квадратный корень.

Коэффициент трения ищется подбором. Вначале задаете от фонаря некоторое значение скорости жидкости и определяете число Рейнольдса Re=ρwd/μ, где μ — динамическая вязкость жидкости (не путайте с кинематической вязкостью, это разные вещи). По Рейнольдсу ищете значения коэффициента трения λ = 64/Re для ламинарного режима и λ = 1/(1.82 lgRe — 1.64)² для турбулентного (здесь lg - десятичный логарифм). И берете то значение, которое выше. После того, как найдете расход жидкости и скорость, надо будет повторить весь расчет заново с новым коэффициентом трения. И такой перерасчет повторяете до тех пор, пока задаваемое для определения коэффициента трения значение скорости не совпадет до некоторой погрешности с тем значением, что вы найдете из расчета.

Зачем нужны подобные расчеты

При составлении плана по возведению большого коттеджа, имеющего несколько ванных комнат, частной гостиницы, организации пожарной системы, очень важно обладать более-менее точной информацией о транспортирующих возможностях имеющейся трубы, беря в учет ее диаметр и давление в системе. Все дело в колебаниях напора во время пика потребления воды: такие явления довольно серьезно влияют на качество предоставляемых услуг.


Кроме того, если водопровод не оснащен водосчетчиками, то при оплате за услуги коммунальных служб в расчет берется т.н. «проходимость трубы». В таком случае вполне логично выплывает вопрос о применяемых при этом тарифах.

При этом важно понимать, что второй вариант не касается частных помещений (квартир и коттеджей), где при отсутствии счетчиков при начислении оплаты учитывают санитарные нормы: обычно это до 360 л/сутки на одного человека.

От чего зависит проходимость трубы

От чего же зависит расход воды в трубе круглого сечения? Складывается впечатление, что поиск ответа не должен вызывать сложностей: чем большим сечением обладает труба, тем больший объем воды она сможет пропустить за определенное время. А простая формула объема трубы позволит узнать и это значение. При этом вспоминается также давление, ведь чем выше водяной столб, тем с большей скоростью вода будет продавливаться внутри коммуникации. Однако практика показывает, что это далеко не все факторы, влияющие на расход воды.

Кроме них, в учет приходится брать также следующие моменты:

  1. Длина трубы . При увеличении ее протяженности вода сильнее трется об ее стенки, что приводит к замедлению потока. Действительно, в самом начале системы вода испытывает воздействие исключительно давлением, однако важно и то, как быстро у следующих порций появится возможность войти внутрь коммуникации. Торможение же внутри трубы зачастую достигает больших значений.
  2. Расход воды зависит от диаметра в куда более сложной степени, чем это кажется на первый взгляд. Когда размер диаметра трубы небольшой, стенки сопротивляются водному потоку на порядок больше, чем в более толстых системах. Как результат, при уменьшении диаметра трубы снижается ее выгода в плане соотношения скорости водного потока к показателю внутренней площади на участке фиксированной длины. Если сказать по-простому, толстый водопровод гораздо быстрее транспортирует воду, чем тонкий.
  3. Материал изготовления . Еще один важный момент, напрямую влияющий на быстроту движения воды по трубе. К примеру, гладкий пропилен способствует скольжению воды в гораздо больше мере, чем шероховатые стальные стенки.
  4. Продолжительность службы . Со временем на стальных водопроводах появляется ржавчина. Кроме этого для стали, как и для чугуна, характерно постепенно накапливать известковые отложения. Сопротивляемость водному потоку трубы с отложениями гораздо выше, чем новых стальных изделий: эта разница иногда доходит до 200 раз. Кроме того, зарастание трубы приводит к уменьшению ее диаметра: даже если не брать в расчет возросшее трение, проходимость ее явно падает. Важно также заметить, что изделия из пластика и металлопластика подобных проблем не имеют: даже спустя десятилетия интенсивной эксплуатации уровень их сопротивляемости водным потокам остается на первоначальном уровне.
  5. Наличие поворотов, фитингов, переходников, вентилей способствует дополнительному торможению водных потоков.

Все вышеперечисленные факторы приходится учитывать, ведь речь идет не о каких-то маленьких погрешностях, а о серьезной разнице в несколько раз. В качестве вывода можно сказать, что простое определение диаметра трубы по расходу воды едва ли возможно.

Новая возможность расчетов расхода воды

Если использование воды осуществляется посредством крана, это значительно упрощает задачу. Главное в таком случае, чтобы размеры отверстия излияния воды были намного меньше диаметра водопровода. В таком случае применима формула расчета воды по сечению трубы Торричелли v^2=2gh, где v - быстрота протекания сквозь небольшое отверстие, g - ускорение свободного падения, а h - высота столба воды над краном (отверстие, имеющее сечение s, за единицу времени пропускает водный объем s*v). При этом важно помнить, что термин «сечение» применяется не для обозначения диаметра, а его площади. Для ее расчета используют формулу pi*r^2.


Если столб воды имеет высоту в 10 метров, а отверстие – диаметр 0,01 м, расход воды через трубу при давлении в одну атмосферу вычисляется таким образом: v^2=2*9.78*10=195,6. После извлечения квадратного корня выходит v=13,98570698963767. После округления, чтобы получить более простой показатель скорости, получается 14м/с. Сечение отверстия, имеющее диаметр 0,01 м, вычисляется так: 3,14159265*0,01^2=0,000314159265 м2. В итоге выходит, что максимальный расход воды через трубу соответствует 0,000314159265*14=0,00439822971 м3/с (немного меньше, чем 4,5 литра воды/секунду). Как можно увидеть, в данном случае расчет воды по сечению трубы провести довольно просто. Также в свободном доступе имеются специальные таблицы с указанием расходы воды для самых популярных сантехнических изделий, при минимальном значении диаметра водопроводной трубы.


Как уже можно понять, универсального несложного способа, чтобы вычислить диаметр трубопровода в зависимости от расхода воды, не существует. Однако определенные показатели для себя вывести все-же можно. Особенно это касается случаев, если система обустроена из пластиковых или металлопластиковых труб, а потребление воды осуществляется кранами с малым сечением выхода. В отдельных случаях такой метод расчета применим на стальных системах, но речь идет прежде всего о новых водопроводах, которые не успели покрыться внутренними отложениями на стенках.

Предприятия и жилые дома потребляют большое количество воды. Эти цифровые показатели становятся не только свидетельством конкретной величины, указывающей расход.

Помимо этого они помогают определить диаметр трубного сортамента. Многие считают, что расчет расхода воды по диаметру трубы и давлению невозможен, так, как эти понятия совершенно не связаны между собой.

Но, практика показала, что это не так. Пропускные возможности сети водоснабжения зависимы от многих показателей, и первыми в этом перечне будут диаметр трубного сортамента и давление в магистрали.

Выполнять расчет пропускной способности трубы в зависимости от ее диаметра рекомендуют еще на стадии проектирования строительства трубопровода. Полученные данные определяют ключевые параметры не только домашней, но и промышленной магистрали. Обо всем этом и пойдет далее речь.

Расчитаем пропускную способность трубы с помощью онлайн калькулятора

ВНИМАНИЕ! Чтобы правильно посчитать, необходимо обратить внимание, что 1кгс/см2 = 1 атмосфере; 10 метров водяного столба = 1кгс/см2 = 1атм; 5 метров водяного столба = 0.5 кгс/см2 и = 0.5 атм и т.д. Дробные числа в онлайн калькулятор вводятся через точку (Например: 3.5 а не 3,5)

Введите параметры для расчёта:

Какие факторы влияют на проходимость жидкости через трубопровод

Критерии, оказывающие влияние на описываемый показатель, составляют большой список. Вот некоторые из них.

  1. Внутренний диаметр, который имеет трубопровод.
  2. Скорость передвижения потока, которая зависит от давления в магистрали.
  3. Материал, взятый для производства трубного сортамента.

Определение расхода воды на выходе магистрали выполняется по диаметру трубы, ведь эта характеристика совместно с другими влияет на пропускную способность системы. Так же рассчитывая количество расходуемой жидкости, нельзя сбрасывать со счетов толщину стенок, определение которой проводится, исходя из предполагаемого внутреннего напора.

Можно даже заявить, что на определение «трубной геометрии» не влияет только протяженность сети. А сечение, напор и другие факторы играют очень важную роль.

Помимо этого, некоторые параметры системы оказывают на показатель расхода не прямое, а косвенное влияние. Сюда относится вязкость и температура прокачиваемой среды.

Подведя небольшой итог, можно сказать, что определение пропускной способности позволяет точно установить оптимальный тип материала для строительства системы и сделать выбор технологии, применяемой для ее сборки. Иначе сеть не будет функционировать эффективно, и ей потребуются частые аварийные ремонты.

Расчет расхода воды по диаметру круглой трубы, зависит от его размера . Следовательно, что по большему сечению, за определенный промежуток времени будет выполнено движение значительного количества жидкости. Но, выполняя расчет и учитывая диаметр, нельзя сбрасывать со счетов давление.

Если рассмотреть этот расчет на конкретном примере, то получается, что через метровое трубное изделие сквозь отверстие в 1 см пройдет меньше жидкости за определенный временной период, чем через магистраль, достигающей в высоту пару десятков метров. Это закономерно, ведь самый высокий уровень расхода воды на участке достигнет самых больших показателей при максимальном давлении в сети и при самых высоких значениях ее объема.

Смотреть видео

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Внешний объем трубного сортамента (мм)

Примерное количество воды, которое получают в литрах за минуту

Примерное количество воды, исчисляемое в м3 за час

Если ориентироваться на нормы СНИП, то в них можно увидеть следующее – суточный объем потребляемой воды одним человеком не превышает 60 литров. Это при условии, что дом не оборудован водопроводом, а в ситуации с благоустроенным жильем, этот объем возрастает до 200 литров.

Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.

Смотреть видео

Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:

Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V

В формуле: q показывает расход воды. Он исчисляется литрами. d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.

Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.



Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.

В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.

По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.

Определение потери напора

Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления . Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.

Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.


А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях является разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.

Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться после тщательной подготовки и измерений.

Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам или воспользоваться онлайн калькулятором. Тогда можно рассчитывать на то, что проложенная сеть водопровода или отопления будет работать с максимальной эффективностью.

Видео – как посчитать расход воды

Смотреть видео

Такая характеристика как зависит от нескольких факторов. Прежде всего, это диаметр трубы, а также тип жидкости, и другие показатели.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

При расчете любых систем, основанных на циркуляции жидкости по трубам, возникает необходимость точного определения пропускной способности труб . Это метрическая величина, которая характеризует количество жидкости, протекающее по трубам за определенный промежуток времени. Данный показатель напрямую связан с материалом, из которого изготовлены трубы.

Если взять, к примеру, трубы из пластика , то они отличаются практически одинаковой пропускной способностью на протяжении всего срока эксплуатации. Пластик, в отличие от металла, не склонен к возникновению коррозии, поэтому постепенного нарастания отложений в нем не наблюдается.

Что касается труб из металла , то их пропускная способность уменьшается год за годом. Из-за появления ржавчины происходит отслойка материала внутри труб. Это приводит к шероховатости поверхности и образованию еще большего налета. Особенно быстро этот процесс происходит в трубах с горячей водой.

Далее приведена таблица приближенных значений которая создана для облегчения определения пропускной способности труб внутриквартирной разводки. В данной таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы.

Таблица пропускной способности труб для жидкостей, газа, водяного пара.

Вид жидкости

Скорость (м/сек)

Вода городского водопровода

Вода трубопроводной магистрали

Вода системы центрального отопления

Вода напорной системы в линии трубопровода

Гидравлическая жидкость

до 12м/сек

Масло линии трубопровода

Масло в напорной системе линии трубопровода

Пар в отопительной системе

Пар системы центрального трубопровода

Пар в отопительной системе с высокой температурой

Воздух и газ в центральной системе трубопровода

Чаще всего, в качестве теплоносителя используется обычная вода. От ее качества зависит скорость уменьшения пропускной способности в трубах. Чем выше качество теплоносителя, тем дольше прослужит трубопровод из любого материала (сталь чугун, медь или пластик).

Расчет пропускной способности труб.

Для точных и профессиональных расчетов необходимо использовать следующие показатели:

  • Материал, из которого изготовлены трубы и другие элементы системы;
  • Длина трубопровода
  • Количество точек водопотребления (для системы подачи воды)

Наиболее популярные способы расчета:

1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений. Основные параметры, которые принимаются во внимание - материал труб (шероховатость поверхности) и их уклон.

2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.

3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.

Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.

Пример расчета пропускной способности трубопровода.

Длина трубопровода - важный показатель при расчете пропускной способности Протяженность магистрали оказывает существенное влияние на показатели пропускной способности. Чем большее расстояние проходит вода, тем меньшее давление она создает в трубах, а значит, скорость потока уменьшается.

Приводим несколько примеров. Опираясь на таблицы, разработанные инженерами для этих целей.

Пропускная способность труб:

  • 0,182 т/ч при диаметре 15 мм
  • 0,65 т/ч с диаметром трубы 25 мм
  • 4 т/ч при диаметре 50 мм

Как можно увидеть из приведенных примеров, больший диаметр увеличивает скорость потока. Если диаметр увеличить в 2 раза, то пропускная способность тоже возрастет. Эту зависимость обязательно учитывают при монтаже любой жидкостной системы, будь то водопровод, водоотведение или теплоснабжение. Особенно это касается отопительных систем, так как в большинстве случаев они являются замкнутыми, и от равномерной циркуляции жидкости зависит теплоснабжение в здании.