Как происходит удвоение молекул днк. Удвоение молекул ДНК (репликация). Образование информационной РНК по матрице ДНК

Информация, записанная в ДНК, должна быть не только реализована в процессе развития клеток и организмов, но и в полном объеме передана следующему поколению. С этой целью перед делением клетки в ней осуществляется процесс репликации , т.е. удвоения количества ДНК.

Информация о механизме репликации содержится в самой ДНК: одни гены кодируют ферменты, синтезирующие предшественники ДНК — нуклеотиды, другие — ферменты, обеспечивающие соединение активированных нуклеотидов в единую цепочку. Механизм репликации был впервые постулирован Дж. Уотсоном и Ф. Криком, которые отмечали, что комплементарность цепей ДНК наводит на мысль, что эта молекула может удваивать саму себя. Они предположили, что для удвоения необходим разрыв водородных связей и расхождение цепей, каждая из которых играет роль матрицы при синтезе комплементарной цепи. В результате одного акта удвоения образуются две двунитиевые молекулы ДНК, в каждой из которых имеется одна материнская нить и одна новая (см. рис.).

Механизм получил название полуконсервативной репликации . Позже матричная природа и постулированный принцип репликации ДНК были подтверждены многочисленными экспериментальными данными.

Репликация ДНК начинается в специфических точках хромосомы — сайтах инициации репликации (origin). Процесс репликации обслуживается большим количеством ферментов. Наиболее полно изучен аппарат репликации бактериальной ДНК, особенно E. coli. Функцию расплетания молекулы ДНК у прокариот выполняют специфические ферменты геликазы , которые используют для работы энергию гидролиза АТФ до АДФ. Они часто функционируют в составе белкового комплекса, осуществляющего перемещение вилки и репликацию расплетенных нитей. Удерживают нити ДНК от воссоединения другие специфические белки, связывающиеся с одноцепочечными участками. Эти участки, разошедшиеся в разные стороны, образуют характерную структуру — репликативную вилку (вилку Кернса). Это — та часть молекулы ДНК, в которой в данный момент осуществляется синтез новой цепи. В продвижении вилки большую роль играет белок гираза , относящийся к разряду топологических изомераз. Он обнаружен только у бактерий. Гираза — это релаксирующий фермент, который, производя двунитиевые разрывы, снимает положительные (перед вилкой) и способствует образованию отрицательных (сзади вилки) супервитков в релаксированной ДНК.

Каждая цепь материнской ДНК служит матрицей для синтеза дочерних молекул. На одной цепи синтез осуществляется непрерывно в направлении от 5" к 3" концу. Эта цепь называется лидирующей. Вторая цепь с противоположной направленностью, называемая отстающей, синтезируется в виде отдельных фрагментов, которые затем сшиваются лигазами в непрерывную молекулу. Фрагменты названы по имени американского ученого Р. Оказаки, впервые постулировавшего такой способ синтеза ДНК, фрагментами Оказаки . В ходе синтеза репликативная вилка перемещается вдоль матрицы, и при этом новые участки ДНК последовательно расплетаются до тех пор, пока вилка не дойдет до точки окончания синтеза (точка терминации).

Синтез новой цепи ДНК требует затравки в виде небольшого фрагмента РНК, т.к. ведущий его фермент ДНК-полимераза для работы нуждается в свободной 3"OH группе. У прокариот обнаружены три разных ДНК-полимеразы с аналогичными функциями, обозначаемые как polI, polII и polIII. Наиболее полно изучена ДНК-полимераза I. Она представляет собой одиночный полипептид с мультифункциональной активностью (полимеразной, 3" → 5" экзонуклеазной и 5" → 3" экзонуклеазной). Синтез затравки (праймера) осуществляет фермент праймаза, который иногда входит в состав комплекса — праймосомы из 15-20 белков, активирующих матрицу. Затравка состоит из 10-60 рибонуклеотидов. После того как ключевой фермент синтеза ДНК у E. coli — polIII — присоединяет к затравке первые дезоксирибонуклеотиды, она удаляется с помощью polI, обладающей 3" → 5" экзонуклеазной активностью, т.е. способностью отщеплять концевые нуклеотиды с 3"-конца цепи. Затравка синтезируется также и в отстающей цепи в начале каждого фрагмента Оказаки. Ее отщепление, а также удлинение фрагментов, синтезированных polIII, осуществляет polI. Роль polII в репликации ДНК E. coli до сих пор не совсем ясна.

При репликации ДНК эукариот процесс репликации осложняется присутствием в составе хромосом белков. Чтобы расплести ДНК, необходимо разрушить сильно конденсированный комплекс ДНК и гистонов, а после репликации вновь осуществить компактизацию дочерних молекул. Раскручивание ДНК вызывает суперспирализацию участков, расположенных рядом с репликационной вилкой. Для снятия возникающего напряжения и свободного продвижения вилки здесь работают специфические ферменты релаксации — топоизомеразы . В различных организмах идентифицированы два типа топоизомераз: I и II типов. Они изменяют степень сверхспирализации и тип сверхспирали, производя разрывы в одной (топоизомеразы I типа) или обеих цепях ДНК (топоизомеразы II типа), и устраняют риск спутывания нитей ДНК.

Репликация бактериальной ДНК является двунаправленным процессом с одним сайтом инициации. В отличие от этого хромосома эукариот состоит из отдельных участков репликации — репликонов и имеет много сайтов инициации. Репликоны могут реплицироваться в разное время и с разной скоростью. Скорость репликации ДНК в эукариотических клетках значительно ниже, чем в прокариотических. У E. coli скорость приблизительно равна 1500 п.н. в секунду, у эукариот — 10-100 п.н. в секунду. Двуцепочечные кольцевые ДНК некоторых вирусов реплицируются по типу катящегося кольца. В этом случае одна цепь ДНК надрезается в одном месте специфическим ферментом и к образовавшемуся свободному 3"ОН-концу с помощью фермента polIII начинают присоединяться нуклеотиды. Матрицей служит внутренняя кольцевая молекула. Надрезанная цепь при этом вытесняется, а затем удваивается по типу отстающей цепи E. coli с образованием фрагментов, которые сшиваются лигазами.

Процесс удвоения ДНК кишечной палочки , который оказался намного более случайным, чем раньше думали биологи.

"Скорость этого процесса может резко меняться во время сборки молекулы. Оказалось, что работа белков в "сборочном конвейере" ДНК никак не синхронизируется: всё происходит случайно, и они действуют абсолютно автономно друг от друга", — заявил Стивен Ковальчуковски (Stephen Kowalczykowski) из университета Калифорнии в Дэвисе (США).

Одна из особенностей живых организмов, отличающих их от вирусов и неживой природы, — способность самостоятельно создавать копии генетического кода , "записывая" все компоненты и процессы, происходящие внутри клеток. Это репликация ДНК , одна из самых сложных химических реакций во Вселенной.

В этом процессе, как показывают опыты последних лет, участвует несколько десятков белков, каждый из которых выполняет собственную функцию. Сначала хромосомы "разматываются" при помощи белка FACT, затем спираль ДНК "распутывает" фермент геликаза, а потом к ним присоединяется белок-"якорь" примаза и особые белки, которые учёные называют ДНК-полимеразами, начинают процесс копирования, считывая спираль и собирая её аналог из отдельных молекулярных "букв"-нуклеотидов.

Проблема, как рассказывает Ковальчуковски, заключается в том, что ДНК состоит из двух спиралей, которые полимеразы, как изначально предполагали учёные, копируют одновременно. Первые наблюдения за этим процессом показали, что на самом деле одна из них копируется быстрее, чем вторая. Вторая полимераза периодически "притормаживает", благодаря чему молекулы белков и их "прислуга" не мешают друг другу.

По этой причине многие исследователи считали, что работа полимераз каким-то образом синхронизирована друг с другом, однако сам механизм синхронизации оставался для них тайной.

Ковальчуковски и его коллеги попытались найти ответ на этот вопрос, проследив за копированием коротких нитей ДНК, которые учёные извлекли из кишечной палочки и "приклеили" при помощи модифицированной версии примазы к поверхности стеклянной пластинки.

Эти пластинки биологи поместили в раствор, где находились ДНК-полимеразы, клеточная "энерговалюта" АТФ и особый набор нуклеотидов, помеченных светящимися белковыми молекулами. Белки светились только тогда, когда присоединённый к ним нуклеотид был "прицеплен" к двойной нити ДНК, что позволило команде Ковальчуковского проследить за тем, как росли копии хромосом кишечной палочки.

Как оказалось, секрет работы полимераз заключался в том, что никакой синхронизации между ними нет: процесс репликации и той, и другой нити шёл абсолютно случайным образом. При появлении "коллизий" между сборщиками ДНК процесс удлинения нити просто по сути начинался заново.

Урок 12 Дата:

Генетическая информация. Удвоение ДНК.

Цель урока: систематизировать знания учащихся о белках и нуклеиновых кислотах, познакомить с наследственной информацией и принципом удвоения ДНК.

Ожидаемые результаты: Знать понятия: «ген», «генетическая информация», ДНК, «комплементарность», «матрица», заслуга Н.К.Кольцова, « редупликация» (удвоение ДНК).

Уметь: работать в паре и группе, работать с рисунками, таблицами, схемами, решать биологические задачи на использование принципа комплементарности , делать выводы.

Понимать: построение цепи ДНК по принципу комплементарности, удвоение ДНК.

Тип урока: изучение нового материала.

Форма обучения: индивидуальная, парная, групповая.

Оборудование: компьютерная презентация, молекула ДНК, видеоролик «Удвоение ДНК», дидактический материал, стикеры.

Ход урока

I .Организационный момент.

Психологический настрой

Для создания коллаборативной среды использую произведение «Турецкий марш» Моцарта, т.к. по данным ученых, исследующих музыкотерапию, произведения Моцарта стимулируют творческую мыслительную деятельность мозга.

II . Актуализация знаний.

Тестовая работа по теме «Обеспечение клеток энергией»

Критерии оценивания (взаимопроверка)

10-9 - «5»

7-8 – «4»

5-6 - «3»

Меньше 5 – «2»

III .Изучение нового материала

Мотивация к уроку

Кто я? Почему я такой? – Я думаю, эти вопросы задавал себе каждый из вас.

Сегодня на уроке мы открываем новую главу “Наследственная информация и реализация ее в клетке”, изучение которой, я надеюсь, позволит вам ответить на волнующие каждого человека вопросы, с биологической точки зрения.

Мы знаем, что все живые организмы имеют признаки сходства, но есть и индивидуальные признаки, дающие возможность организмам выделиться в мире природы.

    Чем мы отличаемся с вами друг от друга? (цвет глаз, форма ушей, длина рук, размер обуви и т.д.)

    Почему же каждый человек уникален?

А с чем это связано?

В процессе беседы формулируется мысль о наличии индивидуальных хромосом и генов.

Раскрывается тема урока и цель.

Работа с текстом, дать определения следующим понятиям темы &12 стр.53-54 (Стратегия «Прочитай – запиши – обсуди в паре»)

Генетическая информация - информация, заключенная в ДНК

Ген - это участок ДНК несущий информацию о структуре и свойствах одного белка

Матрица - основа, с которой считывается информация

Н.К.Кольцов в 1920 г создал теорию матричной репродукции хромосом и сформулировал идею о том, что синтез белка проходит по матричному принципу.

Мозговой штурм

1.Где в клетке заложена наследственная информация? (в ядре в молекуле ДНК)

ДНК – носитель наследственной информации, составляет основную часть хромосом.

2.Что вы знаете о молекуле ДНК?

Принцип комплементарности – взаимное соответствие в химическом строении молекул, обеспечивающее их взаимодействие, комплементарные структуры подходят друг к другу, как «ключ к замку».

ДНК: Аденину соответствует Тимин (двойная связь)
Гуанину соответствует Цитозин (тройная связь)

РНК: Аденину соответствует Урацил (двойная связь)
Гуанину соответствует Цитозин (тройная связь)

Каждый живой организм неповторим. Неповторимость организмов определяется различием в строении и структуре белков. Каждый организм имеет свой собственный, строго определенный набор белков. Именно белки являются основой уникальности каждого вида, хотя некоторые из них, выполняющие одну и ту же функцию у разных организмов, могут быть похожими и даже одинаковыми.

Работа в группах

Чтение текста «Серповидноклеточная анемия» (ответить на вопросы)

1.Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? (Каждая клетка многоклеточного организма возникает из одной зародышевой клетки в результате многократных делений, поэтому все клетки организма имеют одинаковый набор генов)

2.Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют одну и ту же ошибку в одном и том же месте? (причиной замены одной аминокислоты стало изменение структуры ДНК, так как именно она является носителем наследственной информации, т.е. вкралась ошибка)

Случайно возникшая ошибка в гене зародышевой клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют одинаково «испорченный» гемоглобин. Дети, больные анемией, получают «испорченный» ген от родителей через их половые клетки. Информация, заключенная в ДНК клеток (генетическая информация), передается не только из клетки в клетку, но и от родителей к детям. Ген является единицей генетической, или наследственной, информации.

Пример с книгопечатанием. Учебник, который вы держите в руках, издан тиражом n экземпляров. Все n книг отпечатаны с одного шаблона - типографской матрицы, поэтому они совершенно одинаковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах.

Динамическая пауза «Австралийский дождь» (слайд)

Молекулы ДНК обладают поразительным свойством, не присущим ни одной другой из известных молекул, - способностью к удвоению.

Что представляет собой процесс удвоения?

Вы помните, что двойная спираль ДНК построена по принципу комплементарности.

Этот же принцип лежит в основе удвоения молекул ДНК.

Редупликация (удвоение) ДНК. Процесс предшествует делению клетки.
Удвоение молекулы ДНК происходит с удивительной точностью. Новая молекула абсолютно идентична старой. В этом заключается глубокий биологический смысл, потому что нарушения структуры ДНК, ведущие к искажению генетического кода, сделали – бы невозможным сохранение и передачу по наследству генетической информацию, обеспечивающей развитие полезных для организмов признаков. Продолжительность у млекопитающих 6-12 часов.

Работа в группе стр. 55

Заполнение таблицы (составление алгоритма удвоения ДНК)

п/п

Этапы

Рисунок 15 стр.55

Исходное состояние (двуцепочечная спираль).

Под действием фермента геликазы (дезоксирибонуклеазы) – цепочка ДНК раскручивается.

Под действием фермента ДНК-реструктазы, разрушаются водородные связи между азотистыми основаниями, удерживающие цепочки друг возле друга.

По принципу комплементарности, из кусочков ДНК – фрагменты Оказаки, идет сборка новых цепочек, при помощи фермента – ДНК- лигазы (полимеразы).

Образование двух дочерних ДНК (ДНК1 и ДНК2).

Принятие исходного состояния – закручивание в спираль.

Видеоролик «Репликация ДНК»

Вывод: способность молекулы ДНК к удвоению по принципу комплементарности определяет возможность передачи наследственных свойств от материнской клетки к дочерним.

Как вы понимаете выражение: «Молекулы ДНК являются матрицами для синтеза всех белков»?

Роль матрицы в клетках живых организмов выполняют молекулы ДНК.

ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Невозможно судить и о качестве генетической информации по тому, «хороший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

Зная принцип комплементарности можно решать задачи

Достроить молекулу ДНК по принципу комплементарности, если одна из цепей имеет следующую последовательность нуклеотидов – ААГЦЦГГТТТАЦ (ТТЦГГЦЦАААТГ)

IV .Закрепление знаний. Работа по карточкам

Карточка 1. 1-1, 2-3, 3-4, 4-4, 5-1

Карточка 2. 1- гемоглобин 2- ген 3- белок 4-матрица 5- хромосома

(лишняя буква «Я»)

Критерии 5–5, 4-4, 3-3 и т.д.

V .Рефлексия «Плюс-минус-интересно».

«П» - что понравилось на уроке, информация и формы работы, которые вызвали положительные эмоции, либо по мнению ученика могут быть ему полезны для достижения каких-то целей.

«М» - что не понравилось на уроке, показалось скучным, осталось непонятным, или информация, которая, по мнению ученика, оказалась для него не нужной, бесполезной с точки зрения решения жизненных ситуаций.

«И» - любопытные факты, о которых узнали на уроке и вопросы к учителю.

VI .Домашнее задание

&12 Задача №1 стр.59

Учебник для 10-11 классов

Глава IV. Наследственная информация и реализация ее в клетке

Организмы обладают способностью передавать следующим поколениям свои признаки и особенности, т. е. воспроизводить себе подобных. Это явление наследования признаков основано на передаче из поколения в поколение наследственной информации. Материальным носителем этой информации являются молекулы ДНК.

Передача наследственной информации от одного поколения клеток к другому, от одного поколения организмов к последующему обеспечивается некоторыми фундаментальными свойствами ДНК. Она удваивается в каждом поколении клеток и может неопределенно долго воспроизводиться без каких-либо изменений. Относительно редкие изменения наследственной информации также могут воспроизводиться и передаваться от поколения к поколению.

§ 14. Генетическая информация. Удвоение ДНК

Одна из самых замечательных особенностей жизни состоит в том, что все живые существа характеризуются общностью строения клеток и происходящих в них процессов (см. § 7). Однако они имеют и очень много различий. Даже особи одного вида различаются по многим свойствам и признакам: морфологическим, физиологическим, биохимическим.

Современная биология показала, что в своей основе сходство и различие организмов определяются в конечном счете набором белков. Чем ближе организмы друг к другу в систематическом положении, тем более сходны их белки.

Некоторые белки, выполняющие одинаковые функции, могут иметь сходное строение в клетках не только разных видов, но даже более далеких групп организмов. Например, инсулин (гормон поджелудочной железы), регулирующий уровень сахара в крови, близок по строению у собаки и человека. Однако большинство белков, выполняя одну и ту же функцию, несколько отличаются по строению у разных представителей одного и того же вида. Примером могут служить белки групп крови у человека. Такое разнообразие белков лежит в основе специфичности каждого организма.

Известно, что в эритроцитах (красных кровяных клетках дисковидной формы) содержится белок гемоглобин, который доставляет кислород ко всем клеткам тела. Это сложный белок. Каждая его молекула состоит из четырех полипептидных цепей. У людей, страдающих тяжелым наследственным заболеванием - серповидноклеточной анемией, эритроциты похожи не на диски, как обычно, а на серпы. Причина изменения формы клетки - в различии первичной структуры гемоглобина у больных и здоровых людей. В чем же это различие? В двух из четырех цепей нормального гемоглобина на шестом месте стоит глутаминовая кислота. При серповидноклеточной анемии она заменена на аминокислоту валин. Из 574 аминокислот, входящих в состав гемоглобина, заменены только две (по одной в двух цепях). Но это приводит к существенному изменению третичной и четвертичной структуры белка и, как следствие, к изменению формы и нарушению функции эритроцита. Серповидные эритроциты плохо справляются со своей задачей - переносом кислорода.

ДНК - матрица для синтеза белков. Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют одну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру с книгопечатанием. Учебник, который вы держите в руках, издан тиражом n экземпляров. Все n книг отпечатаны с одного шаблона - типографской матрицы, поэтому они совершенно одинаковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате сложных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соединений, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структуре и деятельности клеток, о всех признаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полипептидными цепями. Участок молекулы ДНК, служащий матрицей для синтеза одной полипептидной цепи, т. е. в большинстве случаев одного белка, называют геном. Каждая молекула ДНК содержит множество разных генов. Всю информацию, заключенную в молекулах ДНК, называют генетической, а всю совокупность ДНК клетки называют геномом. Идея о матричном принципе синтеза белков впервые была сформулирована еще в 20-х гг. XX в. выдающимся отечественным биологом Николаем Константиновичем Кольцовым.

НИКОЛАЙ КОНСТАНТИНОВИЧ КОЛЬЦОВ (1872- 1940) - отечественный зоолог, цитолог, генетик. Основоположник экспериментального метода исследований в биологии в нашей стране. Впервые выступил с теорией матричной репродукции хромосом. Основатель Института экспериментальной биологии. Был инициатором создания Всесоюзного института экспериментальной медицины, на основе которого впоследствии была создана Академия медицинских наук.

Удвоение ДНК. Молекулы ДНК обладают поразительным свойством, не присущим ни одной другой из известных молекул, - способностью к удвоению. Что представляет собой процесс удвоения? Вы помните, что двойная спираль ДНК построена по принципу комплементарности (см. рис. 7). Этот же принцип лежит в основе удвоения молекул ДНК. С помощью специальных ферментов водородные связи, скрепляющие нити ДНК, разрываются, нити расходятся, и к каждому нуклеотиду каждой из этих нитей последовательно пристраиваются комплементарные нуклеотиды. Разошедшиеся нити исходной (материнской) молекулы ДНК являются матричными - они задают порядок расположения нуклеотидов во вновь синтезируемой цепи. В результате действия сложного набора ферментов происходит соединение нуклеотидов друг с другом. При этом образуются новые нити ДНК, комплементарные каждой из разошедшихся цепей (рис. 21). Таким образом, в результате удвоения создаются две двойные спирали ДНК (дочерние молекулы), каждая из них имеет одну нить, полученную от материнской молекулы, и одну нить, синтезированную вновь.

Рис. 21. Схема удвоения ДНК

Процесс матричного синтеза ДНК, осуществляемый ферментами ДНК-полимеразами, называют репликацией.

Дочерние молекулы ДНК ничем не отличаются друг от друга и от материнской молекулы. При делении клетки дочерние молекулы ДНК расходятся по двум образующимся клеткам, каждая из которых вследствие этого будет иметь ту же информацию, которая содержалась в материнской клетке. Так как гены - это участки молекул ДНК, то две дочерние клетки, образующиеся при делении, имеют одинаковые гены.

Каждая клетка многоклеточного организма возникает из одной зародышевой клетки в результате многократных делений, поэтому все клетки организма имеют одинаковый набор генов. Случайно возникшая ошибка в гене зародышевой клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют одинаково «испорченный» гемоглобин. Дети, больные анемией, получают «испорченные» гены от родителей через их половые клетки. Информация, заключенная в ДНК клеток (генетическая информация), передается не только из клетки в клетку, но и от родителей к детям. (Подробно об этом будет рассказано в главе VII.) Ген является единицей генетической, или наследственной, информации.

Трудно, глядя на типографскую матрицу, судить о том, хорошая или плохая книга будет по ней напечатана. Невозможно судить и о качестве генетической информации по тому, «хороший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

  1. Какие вещества обусловливают индивидуальные различия организмов?
  2. Может ли замена одной аминокислоты в полипептидной цепи сказаться на функции белка?
  3. Как вы понимаете фразу: «Молекулы ДНК - матрицы для синтеза белков»?
  4. Какой принцип лежит в основе удвоения молекул ДНК?
  5. Одинакова ли генетическая информация в клетке печени и в нервной клетке одного и того же организма?

Матричные синтезы

Удвоение молекулы ДНК – репликация. В результате этого и последующего деления дочерние клетки наследуют геном родителей, в котором полный набор генов, или инструкция о строении РНК и всех белков организма. Это первый поток передачи информации.

Второй поток – происходит в процессе жизнедеятельности клетки. Происходит считывание, или транскрипция, генов в форме полинуклеотидных последовательностей мРНК и использование их как матрица для синтеза соответствующих белков. Т.е. происходит перевод, или трансляция информации с мРНК на язык аминокислот. Поток информации от ДНК через РНК на белок – центральная догма биологии.

Исправление ошибок в структуре ДНК, возникающих под действием внешних и внутренних факторов, осуществляет еще один матричный синтез – репарация.

Итак, к матричным синтезам относят репликацию, транскрипцию, трансляцию и репарацию.

Репликация

Хромосома содержит одну непрерывную двухцепочечную молекулу ДНК. При репликации каждая цепь родительской ДНК служит матрицей для синтеза новой комплементарной цепи. Вновь образованная двойная спираль имеет одну исходную и одну вновь синтезируемую цепь. Такой механизм носит название полуконсервативная репликация.

Репликация состоит из стадий:

Инициация – образование репликативной вилки

Элонгация – синтез новых цепей

Исключение праймеров

Терминация

Синтез ДНК происходит в S-фазу. Инициацию репликации регулируют специфические сигнальные белки – факторы роста. Они связываются с рецепторами мембран, передающих сигнал, побуждающий клетку к началу репликации. Синтез новых одноцепочечных молекул ДНК может произойти только при расхождении родительских цепей. В определенном сайте (точка начала репликации) происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях. Образование репликативной вилки:

ДНК-топоизомеразы (I, II, III) обладают нуклеазной активностью. ДНК-топоизомераза I разрывает фосфоэфирную связь в одной из из цепей и ковалентно присоединяется к 5’-концу в точке разрыва.По окончании формирования репликативной вилки фермент ликвидирует разрыв и отделяется от ДНК. Разрыв водородных связей в двухцепочечной ДНК осуществляет ДНК-хеликаза. Она использует АТФ для расплетения двойной спирали. В результате происходит раскручивание участков суперспирализованной молекулы. В поддержании этого участка в раскрученном состоянии участвуют SSВ-белки. Кготорые связываются с одноцепочечной нитью. Эти белки не закрывают азотистые основания, но не дают комплементарное скручивание и образование шпилек. Они обладают большим сродством к одноцепочечным участкам.


Репликация осуществляется ДНК-полимеразами. Субстратами и источниками энергии служат дезоксирибонуклеозидфосфаты дАТФ, дГТФ, дЦТФ и дТТФ. Для их активации необходимы ионы магния, т.к. они нейтрализуют отрицательный заряд и повышают их реакционную способность. Синтез происходит в направлении 5’ → 3’ растущей цепи, т.е. очередной нуклеотид присоединяется к свободному 3’-ОН- концу предшествующего нуклеотида. Синтезируемая цепь всегда антипараллельна матричной цепи. В ходе репликации образуются 2 дочерние цепи, являющиеся копиями матричных цепей.

Существует 5 ДНК-полимераз (α, β, γ, δ, ε). Они различаются по числу суъединиц, молекулярной массе и функциональному назначению. ДНК-полимеразы α, β, δ, ε участвуют в синтезе ДНК в ядре, а γ в репликации митохондриальной ДНК.

Репликацию инициирует ДНК-полимераза α, т.к. коплементарна определенному сайту одноцепочечной ДНК. Она синтезирует небольшой фрагмент РНК – праймер, состоящий из 8-10 рибонуклеотидов. Далее она синтезирует олигонуклеотид их ≈ 60 нуклеотидных остатков. Первые 8-10 представлены рибонуклеотидами, остальные – дезоксирибонуклеотидами.

Этот олигонуклеотид, образующий небольшой двухцепочечный фрагмент с матрицей позволяет присоединиться ДНК-полимеразе δ и продолжить синтез новой цепи в направлении от 5’- к 3’- концу по ходу раскручивания репликативной вилки. В каждой репликативной вилке идет одновременно синтез двух новых цепей. Лишь для одной цепи совпадает движение с репликативной вилкой – это лидирующая цепь. Для другой цепи синтез осуществляется ДНК-полимеразой α и ε в направлении 5’- к 3’- концу, но против движения репликативной вилки. Поэтому вторая цепь синтезируется прерывисто, короткими фрагментами (фрагменты Оказаки). Эту цепь называют отстающей. Каждый фрагмент ≈ 100 нуклеотидови содержит праймер. Праймеры удаляет ДНК-полимераза β, постепенно отщепляя по одному рибонуклеотиду и присоединяет к ОН-группе на 3’- конце дезоксирибонуклеотиды. Далее ДНК-лигаза закрывает брешь и образуется непрерывная цепь ДНК.

Инициация ДНК происходит в нескольких сайтах хромосомы. Их называют сайтами репликации, или ориджинами. Последовательность ДНК, ограниченную двумя ориджинами, называют единицей репликации, или репликоном. Две репликативные вилки двигаются в противоположных направлениях до тех пор пока не встретяться.

После завершения репликации происходит метилирование нуклеотидных остатков вновь образованных цепей. Метильные группы присоединяются ко всем остаткам аденина в последовательности GATC с образованием

N 6 -метиладенин или возможно метилирование цитозина в последовательностиGC с образованием N 5 -метилцитозина. Количество метилированных оснований равно ≈ 1-8%. Модификация происходит при участии ферментов. Использующих метильные группы S-аденозилметионина (SАМ). Присоединение метильных групп к остаткам аденина и цитозина не нарушает комплементарности цепей.

Наличие метильных групп в цепях ДНК необходимо для формирования структуры хромосом и для регуляции транскрипции генов.

В течение непродолжительного времени в молекуле ДНК последовательности –GATC- метилированы по аденину только в матричной цепи. Это различие используется ферментами репарации для исправления ошибок репликации.

На каждом конце хромосомы присутствует специфическая нуклеотидная последовательность. Она представлена многочисленными повторами (сотни или тысячи раз) олигонуклеотидов –GGGTTA-. Это сочетание называют теломерной последовательностью, или теломерной ДНК. Наличие теломер необходимо для завершения репликации концевых информативных последовательностей хромосом, т.е. для сохранения генетической информации. После завершения репликации хромосомы 5’-конца дочерних цепей ДНК недостроены, т.к. после удаления праймеров эти фрагменты оказываются недореплицированными, потому что ДНК-полимераза β, ответственная за заполнение бреши не может вести синтез цепи ДНК от

3’- к 5’- концу. Таким образом в ходе каждого цикла репликации 5’- концы синтезированных цепей укорачиваются. Эти потери не представляют опасности для генетической информации, т.к. укорочение идет за счет теломер.

Т.о. с каждым клеточным делением ДНК хромосом будут последовательно укорачиваться. Укорочении теломер в большинстве клеток по мере их старения – важный фактор, определяющий продолжительность жизни организма.

Однако в эмбриональных и других быстро делящихся клетках потери концов хромосом недопустимы. В клетках имеется фермент теломераза (нуклеотидилтрансфераза), которая восстанавливает недореплецированные

5’-концы. В ферменте в качестве простетической группы присутствует РНК. Она находится в активном центре фермента и служит матрицей при синтезе теломерных повторов хромосом, т.е. постепенно наращивает гексануклеотид –GGGTTA-. В большинстве клеток она не активна. Однако небольшая ее активность обнаруживается в лимфоцитах, стволовых клетках костного мозга. клетках эпителия, эпидермисе кожи.