Решение показательных неравенств: основные способы. Линейные неравенства, примеры, решения

Многие считают, что показательные неравенства — это что-то такое сложное и непостижимое. И что научиться их решать — чуть ли не великое искусство, постичь которое способны лишь Избранные...

Полная брехня! Показательные неравенства — это просто. И решаются они всегда просто. Ну, почти всегда.:)

Сегодня мы разберём эту тему вдоль и поперёк. Этот урок будет очень полезен тем, кто только начинает разбираться в данном разделе школьной математики. Начнём с простых задач и будем двигаться к более сложным вопросам. Никакой жести сегодня не будет, но того, что вы сейчас прочитаете, будет достаточно, чтобы решить большинство неравенств на всяких контрольных и самостоятельных работах. И на этом вашем ЕГЭ тоже.

Как всегда, начнём с определения. Показательное неравенство — это любое неравенство, содержащее в себе показательную функцию. Другими словами, его всегда можно свести к неравенству вида

\[{{a}^{x}} \gt b\]

Где в роли $b$ может быть обычное число, а может быть и что-нибудь пожёстче. Примеры? Да пожалуйста:

\[\begin{align} & {{2}^{x}} \gt 4;\quad {{2}^{x-1}}\le \frac{1}{\sqrt{2}};\quad {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,1}^{1-x}} \lt 0,01;\quad {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}. \\\end{align}\]

Думаю, смысл понятен: есть показательная функция ${{a}^{x}}$, её с чем-то сравнивают, а затем просят найти $x$. В особо клинических случаях вместо переменной $x$ могут засунуть какую-нибудь функцию $f\left(x \right)$ и тем самым чуть-чуть усложнить неравенство.:)

Конечно, в некоторых случаях неравенство может выглядеть более сурово. Вот, например:

\[{{9}^{x}}+8 \gt {{3}^{x+2}}\]

Или даже вот:

В целом, сложность таких неравенств может быть самой разной, но в итоге они всё равно сводятся к простой конструкции ${{a}^{x}} \gt b$. А уж с такой конструкцией мы как-нибудь разберёмся (в особо клинических случаях, когда ничего не приходит в голову, нам помогут логарифмы). Поэтому сейчас мы научимя решать такие простые конструкции.

Решение простейших показательных неравенств

Рассмотрим что-нибудь совсем простое. Например, вот это:

\[{{2}^{x}} \gt 4\]

Очевидно, что число справа можно переписать в виде степени двойки: $4={{2}^{2}}$. Таким образом, исходное неравенство перепишется в очень удобной форме:

\[{{2}^{x}} \gt {{2}^{2}}\]

И вот уже руки чешутся «зачеркнуть» двойки, стоящие в основаниях степеней, дабы получить ответ $x \gt 2$. Но перед тем как что там зачёркивать, давайте вспомним степени двойки:

\[{{2}^{1}}=2;\quad {{2}^{2}}=4;\quad {{2}^{3}}=8;\quad {{2}^{4}}=16;...\]

Как видим, чем большее число стоит в показателе степени, тем больше получается число на выходе. «Спасибо, кэп!» — воскликнет кто-нибудь из учеников. Разве бывает по-другому? К сожалению, бывает. Например:

\[{{\left(\frac{1}{2} \right)}^{1}}=\frac{1}{2};\quad {{\left(\frac{1}{2} \right)}^{2}}=\frac{1}{4};\quad {{\left(\frac{1}{2} \right)}^{3}}=\frac{1}{8};...\]

Тут тоже всё логично: чем больше степень, тем больше раз число 0,5 умножается само на себя (т.е. делится пополам). Таким образом, полученная последовательность чисел убывает, а разница между первой и второй последовательностью состоит лишь в основании:

  • Если основание степени $a \gt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ тоже будет расти;
  • И наоборот, если $0 \lt a \lt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ будет убывать.

Суммируя эти факты, мы получаем самое главное утверждение, на котором и основано всё решение показательных неравенств:

Если $a \gt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \gt n$. Если $0 \lt a \lt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \lt n$.

Другими словами, если основание больше единицы, его можно просто убрать — знак неравенства при этом не поменяется. А если основание меньше единицы, то его тоже можно убрать, но при этом придётся поменять и знак неравенства.

Обратите внимание: мы не рассмотрели варианты $a=1$ и $a\le 0$. Потому что в этих случаях возникает неопределённость. Допустим, как решить неравенство вида ${{1}^{x}} \gt 3$? Единица в любой степени снова даст единицу — мы никогда не получим тройку или больше. Т.е. решений нет.

С отрицательными основаниями всё ещё интереснее. Рассмотрим для примера вот такое неравенство:

\[{{\left(-2 \right)}^{x}} \gt 4\]

На первый взгляд, всё просто:

Правильно? А вот и нет! Достаточно подставить вместо $x$ парочку чётных и парочку нечётных чисел, чтобы убедиться что решение неверно. Взгляните:

\[\begin{align} & x=4\Rightarrow {{\left(-2 \right)}^{4}}=16 \gt 4; \\ & x=5\Rightarrow {{\left(-2 \right)}^{5}}=-32 \lt 4; \\ & x=6\Rightarrow {{\left(-2 \right)}^{6}}=64 \gt 4; \\ & x=7\Rightarrow {{\left(-2 \right)}^{7}}=-128 \lt 4. \\\end{align}\]

Как видите, знаки чередуются. А ведь есть ещё дробные степени и прочая жесть. Как, например, прикажете считать ${{\left(-2 \right)}^{\sqrt{7}}}$ (минус двойка в степени корень из семи)? Да никак!

Поэтому для определённости полагают, что во всех показательных неравенствах (и уравнениях, кстати, тоже) $1\ne a \gt 0$. И тогда всё решается очень просто:

\[{{a}^{x}} \gt {{a}^{n}}\Rightarrow \left[ \begin{align} & x \gt n\quad \left(a \gt 1 \right), \\ & x \lt n\quad \left(0 \lt a \lt 1 \right). \\\end{align} \right.\]

В общем, ещё раз запомните главное правило: если основание в показательном уравнении больше единицы, его можно просто убрать; а если основание меньше единицы, его тоже можно убрать, но при этом поменяется знак неравенства.

Примеры решения

Итак, рассмотрим несколько простых показательных неравенств:

\[\begin{align} & {{2}^{x-1}}\le \frac{1}{\sqrt{2}}; \\ & {{0,1}^{1-x}} \lt 0,01; \\ & {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}. \\\end{align}\]

Первостепенная задача во всех случаях одна и та же: свести неравенств к простейшему виду ${{a}^{x}} \gt {{a}^{n}}$. Именно это мы сейчас и сделаем с каждым неравенством, а заодно повторим свойства степеней и показательной функции. Итак, поехали!

\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\]

Что здесь можно сделать? Ну, слева у нас и так стоит показательное выражение — ничего менять не надо. А вот справа стоит какая-то хрень: дробь, да ещё и в знаменателе корень!

Однако вспомним правила работы с дробями и степенями:

\[\begin{align} & \frac{1}{{{a}^{n}}}={{a}^{-n}}; \\ & \sqrt[k]{a}={{a}^{\frac{1}{k}}}. \\\end{align}\]

Что это значит? Во-первых, мы легко можем избавиться от дроби, превратив её в степень с отрицательным показателем. А во-вторых, поскольку в знаменателе стоит корень, было бы неплохо превратить и его в степень — на этот раз с дробным показателем.

Применим эти действия последовательно к правой части неравенства и посмотрим, что получится:

\[\frac{1}{\sqrt{2}}={{\left(\sqrt{2} \right)}^{-1}}={{\left({{2}^{\frac{1}{3}}} \right)}^{-1}}={{2}^{\frac{1}{3}\cdot \left(-1 \right)}}={{2}^{-\frac{1}{3}}}\]

Не забываем, что при возведении степени в степень показатели этих степеней складываются. И вообще, при работе с показательными уравнениями и неравенствами совершенно необходимо знать хотя бы простейшие правила работы со степенями:

\[\begin{align} & {{a}^{x}}\cdot {{a}^{y}}={{a}^{x+y}}; \\ & \frac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}; \\ & {{\left({{a}^{x}} \right)}^{y}}={{a}^{x\cdot y}}. \\\end{align}\]

Собственно, последнее правило мы только что и применили. Поэтому наше исходное неравенство перепишется следующим образом:

\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\Rightarrow {{2}^{x-1}}\le {{2}^{-\frac{1}{3}}}\]

Теперь избавляемся от двойки в основании. Поскольку 2 > 1, знак неравенства останется прежним:

\[\begin{align} & x-1\le -\frac{1}{3}\Rightarrow x\le 1-\frac{1}{3}=\frac{2}{3}; \\ & x\in \left(-\infty ;\frac{2}{3} \right]. \\\end{align}\]

Вот и всё решение! Основная сложность — вовсе не в показательной функции, а в грамотном преобразовании исходного выражения: нужно аккуратно и максимально быстро привести его к простейшему виду.

Рассмотрим второе неравенство:

\[{{0,1}^{1-x}} \lt 0,01\]

Так, так. Тут нас поджидают десятичные дроби. Как я уже много раз говорил, в любых выражениях со степенями следует избавляться от десятичных дробей — зачастую только так можно увидеть быстрое и простое решение. Вот и мы избавимся:

\[\begin{align} & 0,1=\frac{1}{10};\quad 0,01=\frac{1}{100}={{\left(\frac{1}{10} \right)}^{2}}; \\ & {{0,1}^{1-x}} \lt 0,01\Rightarrow {{\left(\frac{1}{10} \right)}^{1-x}} \lt {{\left(\frac{1}{10} \right)}^{2}}. \\\end{align}\]

Перед нами вновь простейшее неравенство, да ещё и с основанием 1/10, т.е. меньшим единицы. Что ж, убираем основания, попутно меняя знак с «меньше» на «больше», и получаем:

\[\begin{align} & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\end{align}\]

Получили окончательный ответ: $x\in \left(-\infty ;-1 \right)$. Обратите внимание: ответом является именно множество, а ни в коем случае не конструкция вида $x \lt -1$. Потому что формально такая конструкция — это вовсе не множество, а неравенство относительно переменной $x$. Да, оно очень простое, но это не ответ!

Важное замечание . Данное неравенство можно было решить и по-другому — путём приведения обеих частей к степени с основанием, большим единицы. Взгляните:

\[\frac{1}{10}={{10}^{-1}}\Rightarrow {{\left({{10}^{-1}} \right)}^{1-x}} \lt {{\left({{10}^{-1}} \right)}^{2}}\Rightarrow {{10}^{-1\cdot \left(1-x \right)}} \lt {{10}^{-1\cdot 2}}\]

После такого преобразования мы вновь получим показательное неравенство, но с основанием 10 > 1. А это значит, что можно просто зачеркнуть десятку — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\end{align}\]

Как видите, ответ получился точь-в-точь такой же. При этом мы избавили себя от необходимости менять знак и вообще помнить какие-то там правила.:)

\[{{2}^{{{x}^{2}}-7x+14}} \lt 16\]

Однако пусть вас это не пугает. Чтобы ни находилось в показателях, технология решения самого неравенства остаётся прежней. Поэтому заметим для начала, что 16 = 2 4 . Перепишем исходное неравенство с учётом этого факта:

\[\begin{align} & {{2}^{{{x}^{2}}-7x+14}} \lt {{2}^{4}}; \\ & {{x}^{2}}-7x+14 \lt 4; \\ & {{x}^{2}}-7x+10 \lt 0. \\\end{align}\]

Ура! Мы получили обычное квадратное неравенство! Знак нигде не менялся, поскольку в основании стоит двойка — число, большее единицы.

Нули функции на числовой прямой

Расставляем знаки функции $f\left(x \right)={{x}^{2}}-7x+10$ — очевидно, её графиком будет парабола ветвями вверх, поэтому по бокам будут «плюсы». Нас интересует та область, где функция меньше нуля, т.е. $x\in \left(2;5 \right)$ — это и есть ответ к исходной задаче.

Наконец, рассмотрим ещё одно неравенство:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\]

Опять видим показательную функцию с десятичной дробью в основании. Переводим эту дробь в обыкновенную:

\[\begin{align} & 0,2=\frac{2}{10}=\frac{1}{5}={{5}^{-1}}\Rightarrow \\ & \Rightarrow {{0,2}^{1+{{x}^{2}}}}={{\left({{5}^{-1}} \right)}^{1+{{x}^{2}}}}={{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\end{align}\]

В данном случае мы воспользовались приведённым ранее замечанием — свели основание к числу 5 > 1, чтобы упростить себе дальнейшее решение. Точно так же поступим и с правой частью:

\[\frac{1}{25}={{\left(\frac{1}{5} \right)}^{2}}={{\left({{5}^{-1}} \right)}^{2}}={{5}^{-1\cdot 2}}={{5}^{-2}}\]

Перепишем исходное неравенство с учётом обоих преобразований:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\Rightarrow {{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\ge {{5}^{-2}}\]

Основания с обеих сторон одинаковы и превосходят единицу. Никаких других слагаемых справа и слева нет, поэтому просто «зачёркиваем» пятёрки и получаем совсем простое выражение:

\[\begin{align} & -1\cdot \left(1+{{x}^{2}} \right)\ge -2; \\ & -1-{{x}^{2}}\ge -2; \\ & -{{x}^{2}}\ge -2+1; \\ & -{{x}^{2}}\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}\le 1. \\\end{align}\]

Вот тут надо быть аккуратнее. Многие ученики любят просто извлечь квадратный корень их обеих частей неравенства и записать что-нибудь в духе $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$. Делать этого ни в коем случае нельзя, поскольку корень из точного квадрата — это модуль, а ни в коем случае не исходная переменная:

\[\sqrt{{{x}^{2}}}=\left| x \right|\]

Однако работать с модулями — не самое приятное занятие, правда? Вот и мы не будем работать. А вместо этого просто перенесём все слагаемые влево и решим обычное неравенство методом интервалов:

$\begin{align} & {{x}^{2}}-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & {{x}_{1}}=1;\quad {{x}_{2}}=-1; \\\end{align}$

Вновь отмечаем полученные точки на числовой прямой и смотрим знаки:

Обратите внимание: точки закрашены

Поскольку мы решали нестрогое неравенство, все точки на графике закрашены. Поэтому ответ будет такой: $x\in \left[ -1;1 \right]$ — не интервал, а именно отрезок.

В целом хотел бы заметить, что ничего сложного в показательных неравенствах нет. Смысл всех преобразований, которые мы сегодня выполняли, сводится к простому алгоритму:

  • Найти основание, к которому будем приводить все степени;
  • Аккуратно выполнить преобразования, чтобы получилось неравенство вида ${{a}^{x}} \gt {{a}^{n}}$. Разумеется вместо переменных $x$ и $n$ могут стоять гораздо более сложные функции, но смысл от этого не поменяется;
  • Зачеркнуть основания степеней. При этом может поменяться знак неравенства, если основание $a \lt 1$.

По сути, это универсальный алгоритм решения всех таких неравенств. А всё, что вам ещё будут рассказывать по этой теме — лишь конкретные приёмы и хитрости, позволяющие упростить и ускорить преобразования. Вот об одном из таких приёмов мы сейчас и поговорим.:)

Метод рационализации

Рассмотрим ещё одну партию неравенств:

\[\begin{align} & {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1; \\ & {{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}; \\ & {{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1. \\\end{align}\]

Ну и что в них такого особенного? Они же лёгкие. Хотя, стоп! Число π возводится в какую-то степень? Что за бред?

А как возвести в степень число $2\sqrt{3}-3$? Или $3-2\sqrt{2}$? Составители задач, очевидно, перепили «Боярышника» перед тем, как сесть за работу.:)

На самом деле ничего страшного в этих задачах нет. Напомню: показательной функцией называется выражение вида ${{a}^{x}}$, где основание $a$ — это любое положительное число, за исключением единицы. Число π положительно — это мы и так знаем. Числа $2\sqrt{3}-3$ и $3-2\sqrt{2}$ тоже положительны — в этом легко убедиться, если сравнить их с нулём.

Получается, что все эти «устрашающие» неравенства ничем не отличаются решаются от простых, рассмотренных выше? И решаются точно так же? Да, совершенно верно. Однако на их примере я хотел бы рассмотреть один приём, который здорово экономит время на самостоятельных работах и экзаменах. Речь пойдёт о методе рационализации. Итак, внимание:

Всякое показательное неравенство вида ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $\left(x-n \right)\cdot \left(a-1 \right) \gt 0$.

Вот и весь метод.:) А вы думали, что будет какая-нибудь очередная дичь? Ничего подобного! Но этот простой факт, записанный буквально в одну строчку, значительно упростит нам работу. Взгляните:

\[\begin{matrix} {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}} \\ \Downarrow \\ \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\\end{matrix}\]

Вот и нет больше показательных функций! И не надо помнить: меняется знак или нет. Но возникает новая проблема: что делать с грёбаным множителем \[\left(\text{ }\!\!\pi\!\!\text{ }-1 \right)\]? Мы ведь не знаем, чему равно точное значение числа π. Впрочем, капитан очевидность как бы намекает:

\[\text{ }\!\!\pi\!\!\text{ }\approx 3,14... \gt 3\Rightarrow \text{ }\!\!\pi\!\!\text{ }-1 \gt 3-1=2\]

В общем, точное значение π нас особо-то и не колышет — нам лишь важно понимать, что в любом случае $\text{ }\!\!\pi\!\!\text{ }-1 \gt 2$, т.е. это положительная константа, и мы можем разделить на неё обе части неравенства:

\[\begin{align} & \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\ & x+7-\left({{x}^{2}}-3x+2 \right) \gt 0; \\ & x+7-{{x}^{2}}+3x-2 \gt 0; \\ & -{{x}^{2}}+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-4x-5 \lt 0; \\ & \left(x-5 \right)\left(x+1 \right) \lt 0. \\\end{align}\]

Как видите, в определённый момент пришлось разделить на минус единицу — при этом знак неравенства поменялся. В конце я разложил квадратный трёхчлен по теореме Виета — очевидно, что корни равны ${{x}_{1}}=5$ и ${{x}_{2}}=-1$. Дальше всё решается классическим методом интервалов:

Решаем неравенство методом интервалов

Все точки выколоты, поскольку исходное неравенство строгое. Нас интересует область с отрицательными значениями, поэтому ответ: $x\in \left(-1;5 \right)$. Вот и всё решение.:)

Перейдём к следующей задаче:

\[{{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1\]

Тут вообще всё просто, потому что справа стоит единица. А мы помним, что единица — это любое число в нулевой степени. Даже если этим числом является иррациональное выражение, стоящее в основании слева:

\[\begin{align} & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1={{\left(2\sqrt{3}-3 \right)}^{0}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt {{\left(2\sqrt{3}-3 \right)}^{0}}; \\\end{align}\]

Что ж, выполняем рационализацию:

\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-3-1 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-4 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0. \\\end{align}\]

Осталось лишь разобраться со знаками. Множитель $2\left(\sqrt{3}-2 \right)$ не содержит переменной $x$ — это просто константа, и нам необходимо выяснить её знак. Для этого заметим следующее:

\[\begin{matrix} \sqrt{3} \lt \sqrt{4}=2 \\ \Downarrow \\ 2\left(\sqrt{3}-2 \right) \lt 2\cdot \left(2-2 \right)=0 \\\end{matrix}\]

Получается, что второй множитель — не просто константа, а отрицательная константа! И при делении на неё знак исходного неравенства поменяется на противоположный:

\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0; \\ & {{x}^{2}}-2x-0 \gt 0; \\ & x\left(x-2 \right) \gt 0. \\\end{align}\]

Теперь всё становится совсем очевидно. Корни квадратного трёхчлена, стоящего справа: ${{x}_{1}}=0$ и ${{x}_{2}}=2$. Отмечаем их на числовой прямой и смотрим знаки функции $f\left(x \right)=x\left(x-2 \right)$:

Случай, когда нас интересуют боковые интервалы

Нас интересуют интервалы, отмеченные знаком «плюс». Осталось лишь записать ответ:

Переходим к следующему примеру:

\[{{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}\]

Ну, тут совсем всё очевидно: в основаниях стоят степени одного и того же числа. Поэтому я распишу всё кратко:

\[\begin{matrix} \frac{1}{3}={{3}^{-1}};\quad \frac{1}{9}=\frac{1}{{{3}^{2}}}={{3}^{-2}} \\ \Downarrow \\ {{\left({{3}^{-1}} \right)}^{{{x}^{2}}+2x}} \gt {{\left({{3}^{-2}} \right)}^{16-x}} \\\end{matrix}\]

\[\begin{align} & {{3}^{-1\cdot \left({{x}^{2}}+2x \right)}} \gt {{3}^{-2\cdot \left(16-x \right)}}; \\ & {{3}^{-{{x}^{2}}-2x}} \gt {{3}^{-32+2x}}; \\ & \left(-{{x}^{2}}-2x-\left(-32+2x \right) \right)\cdot \left(3-1 \right) \gt 0; \\ & -{{x}^{2}}-2x+32-2x \gt 0; \\ & -{{x}^{2}}-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}+4x-32 \lt 0; \\ & \left(x+8 \right)\left(x-4 \right) \lt 0. \\\end{align}\]

Как видите, в процессе преобразований пришлось умножать на отрицательное число, поэтому поменялся знак неравенства. В самом конце я вновь применил теорему Виета для разложения на множители квадратного трёхчлена. В итоге ответ будет следующий: $x\in \left(-8;4 \right)$ — желающие могут убедиться в этом, нарисовав числовую прямую, отметив точки и посчитав знаки. А мы тем временем перейдём к последнему неравенству из нашего «комплекта»:

\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1\]

Как видим, в основании снова стоит иррациональное число, а справа снова стоит единица. Поэтому перепишем наше показательное неравенство следующим образом:

\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt {{\left(3-2\sqrt{2} \right)}^{0}}\]

Применяем рационализацию:

\[\begin{align} & \left(3x-{{x}^{2}}-0 \right)\cdot \left(3-2\sqrt{2}-1 \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot \left(2-2\sqrt{2} \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0. \\\end{align}\]

Однако совершенно очевидно, что $1-\sqrt{2} \lt 0$, поскольку $\sqrt{2}\approx 1,4... \gt 1$. Поэтому второй множитель — вновь отрицательная константа, на которую можно разделить обе части неравенства:

\[\begin{matrix} \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0 \\ \Downarrow \\\end{matrix}\]

\[\begin{align} & 3x-{{x}^{2}}-0 \gt 0; \\ & 3x-{{x}^{2}} \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-3x \lt 0; \\ & x\left(x-3 \right) \lt 0. \\\end{align}\]

Переход к другому основанию

Отдельной проблемой при решении показательных неравенств является поиск «правильного» основания. К сожалению, далеко не всегда при первом взгляде на задание очевидно, что брать за основание, а что делать степенью этого основания.

Но не переживайте: здесь нет никакой магии и «секретных» технологий. В математике любой навык, который нельзя алгоритмизировать, можно легко выработать с помощью практики. Но для этого придётся решать задачи разного уровня сложности. Например, вот такие:

\[\begin{align} & {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}; \\ & {{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & {{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1; \\ & {{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81. \\\end{align}\]

Сложно? Страшно? Да это же проще, чем цыплёнка об асфальт! Давайте попробуем. Первое неравенство:

\[{{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}\]

Ну, я думают, тут и ежу всё понятно:

Переписываем исходное неравенство, сводя всё к основанию «два»:

\[{{2}^{\frac{x}{2}}} \lt {{2}^{\frac{8}{x}}}\Rightarrow \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0\]

Да, да, вы всё правильно поняли: я только что применил метод рационализации, описанный выше. Теперь нужно работать аккуратно: у нас получилось дробно-рациональное неравенство (это такое, у которого в знаменателе стоит переменная), поэтому прежде чем что-то приравнивать к нулю, необходимо привести всё к общему знаменателю и избавиться от множителя-константы.

\[\begin{align} & \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0; \\ & \left(\frac{{{x}^{2}}-16}{2x} \right)\cdot 1 \lt 0; \\ & \frac{{{x}^{2}}-16}{2x} \lt 0. \\\end{align}\]

Теперь используем стандартный метод интервалов. Нули числителя: $x=\pm 4$. Знаменатель обращается в ноль только при $x=0$. Итого три точки, которые надо отметить на числовой прямой (все точки выколоты, т.к. знак неравенства строгий). Получим:


Более сложный случай: три корня

Как нетрудно догадаться, штриховкой отмечены те интервалы, на которых выражение слева принимает отрицательные значения. Поэтому в окончательный ответ пойдут сразу два интервала:

Концы интервалов не входят в ответ, поскольку исходное неравенство было строгим. Никаких дополнительных проверок этого ответа не требуется. В этом плане показательные неравенства намного проще логарифмических: никаких ОДЗ, никаких ограничений и т.д.

Переходим к следующей задаче:

\[{{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\]

Здесь тоже никаких проблем, поскольку мы уже знаем, что $\frac{1}{3}={{3}^{-1}}$, поэтому всё неравенство можно переписать так:

\[\begin{align} & {{\left({{3}^{-1}} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\Rightarrow {{3}^{-\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & \left(-\frac{3}{x}-\left(2+x \right) \right)\cdot \left(3-1 \right)\ge 0; \\ & \left(-\frac{3}{x}-2-x \right)\cdot 2\ge 0;\quad \left| :\left(-2 \right) \right. \\ & \frac{3}{x}+2+x\le 0; \\ & \frac{{{x}^{2}}+2x+3}{x}\le 0. \\\end{align}\]

Обратите внимание: в третьей строчке я решил не мелочиться и сразу разделить всё на (−2). Минул ушёл в первую скобку (теперь там везде плюсы), а двойка сократилась с множителем-константой. Именно так и стоит поступать при оформлении реальных выкладок на самостоятельных и контрольных работах — не надо расписывать прям каждое действие и преобразование.

Далее в дело вступает знакомый нам метод интервалов. Нули числителя: а их нет. Потому что дискриминант будет отрицательный. В свою очередь знаменатель обнуляется лишь при $x=0$ — как и в прошлый раз. Ну и понятно, что справа от $x=0$ дробь будет принимать положительные значения, а слева — отрицательные. Поскольку нас интересуют именно отрицательные значения, то окончательный ответ: $x\in \left(-\infty ;0 \right)$.

\[{{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1\]

А что нужно делать с десятичными дробями в показательных неравенствах? Правильно: избавляться от них, переводя в обыкновенные. Вот и мы переведём:

\[\begin{align} & 0,16=\frac{16}{100}=\frac{4}{25}\Rightarrow {{\left(0,16 \right)}^{1+2x}}={{\left(\frac{4}{25} \right)}^{1+2x}}; \\ & 6,25=\frac{625}{100}=\frac{25}{4}\Rightarrow {{\left(6,25 \right)}^{x}}={{\left(\frac{25}{4} \right)}^{x}}. \\\end{align}\]

Ну и что мы получили в основаниях показательных функций? А получили мы два взаимно обратных числа:

\[\frac{25}{4}={{\left(\frac{4}{25} \right)}^{-1}}\Rightarrow {{\left(\frac{25}{4} \right)}^{x}}={{\left({{\left(\frac{4}{25} \right)}^{-1}} \right)}^{x}}={{\left(\frac{4}{25} \right)}^{-x}}\]

Таким образом исходное неравенство можно переписать так:

\[\begin{align} & {{\left(\frac{4}{25} \right)}^{1+2x}}\cdot {{\left(\frac{4}{25} \right)}^{-x}}\ge 1; \\ & {{\left(\frac{4}{25} \right)}^{1+2x+\left(-x \right)}}\ge {{\left(\frac{4}{25} \right)}^{0}}; \\ & {{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}. \\\end{align}\]

Разумеется, при умножении степеней с одинаковым основанием их показатели складываются, что и произошло во второй строчке. Кроме того, мы представили единицу, стоящую справа, тоже в виде степени по основанию 4/25. Осталось лишь выполнить рационализацию:

\[{{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}\Rightarrow \left(x+1-0 \right)\cdot \left(\frac{4}{25}-1 \right)\ge 0\]

Заметим, что $\frac{4}{25}-1=\frac{4-25}{25} \lt 0$, т.е. второй множитель является отрицательной константой, и при делении на неё знак неравенства поменяется:

\[\begin{align} & x+1-0\le 0\Rightarrow x\le -1; \\ & x\in \left(-\infty ;-1 \right]. \\\end{align}\]

Наконец, последнее неравенство из текущего «комплекта»:

\[{{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81\]

В принципе, идея решения тут тоже ясна: все показательные функции, входящие в состав неравенства, необходимо свести к основанию «3». Но для этого придётся немного повозиться с корнями и степенями:

\[\begin{align} & \frac{27}{\sqrt{3}}=\frac{{{3}^{3}}}{{{3}^{\frac{1}{3}}}}={{3}^{3-\frac{1}{3}}}={{3}^{\frac{8}{3}}}; \\ & 9={{3}^{2}};\quad 81={{3}^{4}}. \\\end{align}\]

С учётом этих фактов исходное неравенство можно переписать так:

\[\begin{align} & {{\left({{3}^{\frac{8}{3}}} \right)}^{-x}} \lt {{\left({{3}^{2}} \right)}^{4-2x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x+4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{4-4x}}. \\\end{align}\]

Обратите внимание на 2-ю и 3-ю строчку выкладок: прежде чем что-то делать с неравенством, обязательно приведите его к тому виду, о котором мы говорили с самого начала урока: ${{a}^{x}} \lt {{a}^{n}}$. До тех пор, пока у вас слева или справа есть какие-то левые множители, дополнительные константы и т.д., никакую рационализацию и «зачёркивание» оснований выполнять нельзя ! Бесчисленное множество задач было выполнено неправильно из-за непонимания этого простого факта. Я сам постоянно наблюдаю эту проблему у моих учеников, когда мы только-только приступаем к разбору показательных и логарифмических неравенств.

Но вернёмся к нашей задаче. Попробуем в этот раз обойтись без рационализации. Вспоминаем: основание степени больше единицы, поэтому тройки можно просто зачеркнуть — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -\frac{8x}{3} \lt 4-4x; \\ & 4x-\frac{8x}{3} \lt 4; \\ & \frac{4x}{3} \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end{align}\]

Вот и всё. Окончательный ответ: $x\in \left(-\infty ;3 \right)$.

Выделение устойчивого выражения и замена переменной

В заключение предлагаю решить ещё четыре показательных неравенства, которые уже являются довольно сложными для неподготовленных учеников. Чтобы справиться с ними, необходимо вспомнить правила работы со степенями. В частности — вынесение общих множителей за скобки.

Но самое главное — научиться понимать: что именно можно вынести за скобки. Такое выражение называется устойчивым — его можно обозначить новой переменной и таким образом избавиться от показательной функции. Итак, посмотрим на задачи:

\[\begin{align} & {{5}^{x+2}}+{{5}^{x+1}}\ge 6; \\ & {{3}^{x}}+{{3}^{x+2}}\ge 90; \\ & {{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500; \\ & {{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768. \\\end{align}\]

Начнём с самой первой строчки. Выпишем это неравенство отдельно:

\[{{5}^{x+2}}+{{5}^{x+1}}\ge 6\]

Заметим, что ${{5}^{x+2}}={{5}^{x+1+1}}={{5}^{x+1}}\cdot 5$, поэтому правую часть можно переписать:

Заметим, что никаких других показательных функций, кроме ${{5}^{x+1}}$, в неравенстве нет. И вообще, нигде больше не встречается переменная $x$, поэтому введём новую переменную: ${{5}^{x+1}}=t$. Получим следующую конструкцию:

\[\begin{align} & 5t+t\ge 6; \\ & 6t\ge 6; \\ & t\ge 1. \\\end{align}\]

Возвращаемся к исходной переменной ($t={{5}^{x+1}}$), а заодно вспоминаем, что 1=5 0 . Имеем:

\[\begin{align} & {{5}^{x+1}}\ge {{5}^{0}}; \\ & x+1\ge 0; \\ & x\ge -1. \\\end{align}\]

Вот и всё решение! Ответ: $x\in \left[ -1;+\infty \right)$. Переходим ко второму неравенству:

\[{{3}^{x}}+{{3}^{x+2}}\ge 90\]

Здесь всё то же самое. Заметим, что ${{3}^{x+2}}={{3}^{x}}\cdot {{3}^{2}}=9\cdot {{3}^{x}}$. Тогда левую часть можно переписать:

\[\begin{align} & {{3}^{x}}+9\cdot {{3}^{x}}\ge 90;\quad \left| {{3}^{x}}=t \right. \\ & t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow {{3}^{x}}\ge 9\Rightarrow {{3}^{x}}\ge {{3}^{2}}; \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\end{align}\]

Вот примерно так и нужно оформлять решение на настоящих контрольных и самостоятельных работах.

Что ж, попробуем что-нибудь посложнее. Например, вот такое неравенство:

\[{{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500\]

В чём тут проблема? Прежде всего, основания показательных функций, стоящих слева, разные: 5 и 25. Однако 25 = 5 2 , поэтому первое слагаемое можно преобразовать:

\[\begin{align} & {{25}^{x+1,5}}={{\left({{5}^{2}} \right)}^{x+1,5}}={{5}^{2x+3}}; \\ & {{5}^{2x+3}}={{5}^{2x+2+1}}={{5}^{2x+2}}\cdot 5. \\\end{align}\]

Как видите, сначала мы всё привели к одинаковому основанию, а затем заметили, что первое слагаемое легко сводится ко второму — достаточно лишь разложить показатель. Теперь можно смело вводить новую переменную: ${{5}^{2x+2}}=t$, и всё неравенство перепишется так:

\[\begin{align} & 5t-t\ge 2500; \\ & 4t\ge 2500; \\ & t\ge 625={{5}^{4}}; \\ & {{5}^{2x+2}}\ge {{5}^{4}}; \\ & 2x+2\ge 4; \\ & 2x\ge 2; \\ & x\ge 1. \\\end{align}\]

И вновь никаких трудностей! Окончательный ответ: $x\in \left[ 1;+\infty \right)$. Переходим к заключительному неравенству в сегодняшнем уроке:

\[{{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768\]

Первое, на что следует обратить внимание — это, конечно, десятичная дробь в основании первой степени. От неё необходимо избавиться, а заодно привести все показательные функции к одному и тому же основанию — числу «2»:

\[\begin{align} & 0,5=\frac{1}{2}={{2}^{-1}}\Rightarrow {{\left(0,5 \right)}^{-4x-8}}={{\left({{2}^{-1}} \right)}^{-4x-8}}={{2}^{4x+8}}; \\ & 16={{2}^{4}}\Rightarrow {{16}^{x+1,5}}={{\left({{2}^{4}} \right)}^{x+1,5}}={{2}^{4x+6}}; \\ & {{2}^{4x+8}}-{{2}^{4x+6}} \gt 768. \\\end{align}\]

Отлично, первый шаг мы сделали — всё привели к одному и тому же основанию. Теперь необходимо выделить устойчивое выражение. Заметим, что ${{2}^{4x+8}}={{2}^{4x+6+2}}={{2}^{4x+6}}\cdot 4$. Если ввести новую переменную ${{2}^{4x+6}}=t$, то исходное неравенство можно переписать так:

\[\begin{align} & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256={{2}^{8}}; \\ & {{2}^{4x+6}} \gt {{2}^{8}}; \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac{1}{2}=0,5. \\\end{align}\]

Естественно, может возникнуть вопрос: каким это образом мы обнаружили, что 256 = 2 8 ? К сожалению, тут нужно просто знать степени двойки (а заодно степени тройки и пятёрки). Ну, или делить 256 на 2 (делить можно, поскольку 256 — чётное число) до тех пор, пока не получим результат. Выглядеть это будет примерно так:

\[\begin{align} & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & ={{2}^{8}}.\end{align}\]

То же самое и с тройкой (числа 9, 27, 81 и 243 являются её степенями), и с семёркой (числа 49 и 343 тоже было бы неплохо запомнить). Ну, и у пятёрки тоже есть «красивые» степени, которые нужно знать:

\[\begin{align} & {{5}^{2}}=25; \\ & {{5}^{3}}=125; \\ & {{5}^{4}}=625; \\ & {{5}^{5}}=3125. \\\end{align}\]

Конечно, все эти числа при желании можно восстановить в уме, просто последовательно умножая их друг на друга. Однако, когда вам предстоит решить несколько показательных неравенств, причём каждое следующее сложнее предыдущего, то последнее, о чём хочется думать — это степени каких-то там чисел. И в этом смысле данные задачи являются более сложными, нежели «классические» неравенства, которые решаются методом интервалов.

Урок и презентация на тему: "Системы неравенств. Примеры решений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Интерактивное учебное пособие для 9 класса "Правила и упражнения по геометрии"
Электронное учебное пособие "Понятная геометрия" для 7-9 классов

Система неравенств

Ребята, вы изучили линейные и квадратные неравенства, научились решать задачи на эти темы. Теперь давайте перейдем к новому понятию в математике – система неравенств. Система неравенств похожа на систему уравнений. Вы помните системы уравнений? Системы уравнений вы изучали в седьмом классе, постарайтесь вспомнить, как вы их решали.

Введем определение системы неравенств.
Несколько неравенств с некоторой переменой х образуют систему неравенств, если нужно найти все значения х, при которых каждое из неравенств образует верное числовое выражение.

Любое значение x, при которых каждое неравенство принимает верное числовое выражение, является решением неравенства. Также может называться и частным решением.
А что есть частное решение? Например, в ответе мы получили выражение х>7. Тогда х=8, или х=123, или какое-либо другое число большее семи – частное решение, а выражение х>7 – общее решение. Общее решение образуется множеством частных решений.

Как мы объединяли систему уравнений? Правильно, фигурной скобкой, так вот с неравенствами поступают также. Давайте рассмотрим пример системы неравенств: $\begin{cases}x+7>5\\x-3
Если система неравенств состоит из одинаковых выражений, например, $\begin{cases}x+7>5\\x+7
Так, что же значит: найти решение системы неравенств?
Решение неравенства – это множество частных решений неравенства, которые удовлетворяют сразу обоим неравенствам системы.

Общий вид системы неравенств запишем в виде $\begin{cases}f(x)>0\\g(x)>0\end{cases}$

Обозначим $Х_1$ – общее решение неравенства f(x)>0.
$Х_2$ – общее решение неравенства g(x)>0.
$Х_1$ и $Х_2$ - это множество частных решений.
Решением системы неравенств будут числа, принадлежащие, как $Х_1$, так и $Х_2$.
Давайте вспомним операции над множествами. Как нам найти элементы множества, принадлежащие сразу обоим множествам? Правильно, для этого есть операция пересечения. Итак, решением нашего неравенство будет множество $А= Х_1∩ Х_2$.

Примеры решений систем неравенств

Давайте посмотрим примеры решения систем неравенств.

Решите систему неравенств.
а) $\begin{cases}3x-1>2\\5x-10 b) $\begin{cases}2x-4≤6\\-x-4
Решение.
а) Решим каждое неравенство отдельно.
$3х-1>2; \; 3x>3; \; x>1$.
$5x-10
Отметим наши промежутки на одной координатной прямой.

Решением системы будет отрезок пересечения наших промежутков. Неравенство строгое, тогда отрезок будет открытым.
Ответ: (1;3).

Б) Также решим каждое неравенство отдельно.
$2x-4≤6; 2x≤ 10; x ≤ 5$.
$-x-4 -5$.


Решением системы будет отрезок пересечения наших промежутков. Второе неравенство строгое, тогда отрезок будет открытым слева.
Ответ: (-5; 5].

Давайте обобщим полученные знания.
Допустим, необходимо решить систему неравенств: $\begin{cases}f_1 (x)>f_2 (x)\\g_1 (x)>g_2 (x)\end{cases}$.
Тогда, интервал ($x_1; x_2$) – решение первого неравенства.
Интервал ($y_1; y_2$) – решение второго неравенства.
Решение системы неравенств – есть пересечение решений каждого неравенства.

Системы неравенств могут состоять из неравенств не только первого порядка, но и любых других видов неравенств.

Важные правила при решении систем неравенств.
Если одно из неравенств системы не имеет решений, то и вся система не имеет решений.
Если одно из неравенств выполняется для любых значений переменой, то решением системы будет решение другого неравенства.

Примеры.
Решить систему неравенств:$\begin{cases}x^2-16>0\\x^2-8x+12≤0 \end{cases}$
Решение.
Решим каждое неравенство по отдельности.
$x^2-16>0$.
$(x-4)(x+4)>0$.



Решим второе неравенство.
$x^2-8x+12≤0$.
$(x-6)(x-2)≤0$.

Решением неравенства будет промежуток.
Нарисуем оба промежутка на одной прямой и найдем пересечение.
Пересечение промежутков - отрезок (4; 6].
Ответ: (4;6].

Решить систему неравенств.
а) $\begin{cases}3x+3>6\\2x^2+4x+4 б) $\begin{cases}3x+3>6\\2x^2+4x+4>0\end{cases}$.

Решение.
а) Первое неравенство имеет решение х>1.
Найдем дискриминант для второго неравенства.
$D=16-4 * 2 * 4=-16$. $D Вспомним правило, когда одно из неравенств не имеет решений, то вся система не имеет решений.
Ответ: Нет решений.

Б) Первое неравенство имеет решение х>1.
Второе неравенство больше нуля при всех х. Тогда решение системы совпадает с решением первого неравенства.
Ответ: х>1.

Задачи на системы неравенств для самостоятельного решения

Решите системы неравенств:
а) $\begin{cases}4x-5>11\\2x-12 б) $\begin{cases}-3x+1>5\\3x-11 в) $\begin{cases}x^2-25 г) $\begin{cases}x^2-16x+55>0\\x^2-17x+60≥0 \end{cases}$
д) $\begin{cases}x^2+36

Теперь можно разбираться, как решаются линейные неравенства a·x+b<0 (они могут быть записаны и с помощью любого другого знака неравенства).

Основной способ их решения заключается в использовании равносильных преобразований, позволяющих прийти при a≠0 к элементарным неравенствам вида x

, ≥), p - некоторое число, которые и являются искомым решением, а при a=0 – к числовым неравенствам вида a

, ≥), из которых делается вывод о решении исходного неравенства. Его мы и разберем в первую очередь.

Также не помешает взглянуть на решение линейных неравенств с одной переменной и с других позиций. Поэтому, мы еще покажем, как можно решить линейное неравенство графически и методом интервалов.

Используя равносильные преобразования

Пусть нам нужно решить линейное неравенство a·x+b<0 (≤, >, ≥). Покажем, как это сделать, используя равносильные преобразования неравенства .

Подходы при этом различаются в зависимости от равенства или неравенства нулю коэффициента a при переменной x . Рассмотрим их по очереди. Причем при рассмотрении будем придерживаться схемы из трех пунктов: сначала будем давать суть процесса, дальше – алгоритм решения линейного неравенства, наконец, приводить решения характерных примеров.

Начнем с алгоритма решения линейного неравенства a·x+b<0 (≤, >, ≥) при a≠0 .

  • Во-первых, число b переносится в правую часть неравенства с противоположным знаком. Это позволяет перейти к равносильному неравенству a·x<−b (≤, >, ≥).
  • Во-вторых, проводится деление обеих частей полученного неравенства на отличное от нуля число a . При этом, если a – положительное число, то знак неравенства сохраняется, а если a - отрицательное число, то знак неравенства изменяется на противоположный. В результате получается элементарное неравенство, равносильное исходному линейному неравенству, оно и является ответом.

Остается разобраться с применением озвученного алгоритма на примерах. Рассмотрим, как с его помощью решаются линейные неравенства при a≠0 .

Пример.

Решите неравенство 3·x+12≤0 .

Решение.

Для данного линейного неравенства имеем a=3 и b=12 . Очевидно, коэффициент a при переменной x отличен от нуля. Воспользуемся соответствующим алгоритмом решения, приведенным выше.

Во-первых, переносим слагаемое 12 в правую часть неравенства, не забывая изменить его знак, то есть, в правой части окажется −12 . В результате приходим к равносильному неравенству 3·x≤−12 .

И, во-вторых, делим обе части полученного неравенства на 3 , так как 3 – число положительное, то знак неравенства не изменяем. Имеем (3·x):3≤(−12):3 , что то же самое x≤−4 .

Полученное элементарное неравенство x≤−4 равносильно исходному линейному неравенству и является его искомым решением.

Итак, решением линейного неравенства 3·x+12≤0 является любое действительное число, меньшее или равное минус четырем. Ответ можно записать и в виде числового промежутка , отвечающего неравенству x≤−4 , то есть, как (−∞, −4] .

Приобретя сноровку в работе с линейными неравенствами, их решения можно будет записывать кратко без пояснений. При этом сначала записывают исходное линейное неравенство, а ниже – равносильные ему неравенства, получающиеся на каждом шаге решения:
3·x+12≤0 ;
3·x≤−12 ;
x≤−4 .

Ответ:

x≤−4 или (−∞, −4] .

Пример.

Укажите все решения линейного неравенства −2,7·z>0 .

Решение.

Здесь коэффициент a при переменной z равен −2,7 . А коэффициент b отсутствует в явном виде, то есть, он равен нулю. Поэтому, первый шаг алгоритма решения линейного неравенства с одной переменной выполнять не нужно, так как перенос нуля из левой части в правую не изменит вид исходного неравенства.

Остается разделить обе части неравенства на −2,7 , не забыв изменить знак неравенства на противоположный, так как −2,7 – отрицательное число. Имеем (−2,7·z):(−2,7)<0:(−2,7) , и дальше z<0 .

А теперь кратко:
−2,7·z>0 ;
z<0 .

Ответ:

z<0 или (−∞, 0) .

Пример.

Решите неравенство .

Решение.

Нам нужно решить линейное неравенство с коэффициентом a при переменной x , равным −5 , и с коэффициентом b , которому отвечает дробь −15/22 . Действуем по известной схеме: сначала переносим −15/22 в правую часть с противоположным знаком, после чего выполняем деление обеих частей неравенства на отрицательное число −5 , изменяя при этом знак неравенства:

В последнем переходе в правой части используется , затем выполняется .

Ответ:

Теперь переходим к случаю, когда a=0 . Принцип решения линейного неравенства a·x+b<0 (знак, естественно, может быть и другим) при a=0 , то есть, неравенства 0·x+b<0 , заключается в рассмотрении числового неравенства b<0 и выяснении, верное оно или нет.

На чем это основано? Очень просто: на определении решения неравенства . Каким образом? Да вот каким: какое бы значение переменной x мы не подставили в исходное линейное неравенство, мы получим числовое неравенство вида b<0 (так как при подстановке любого значения t вместо переменной x мы имеем 0·t+b<0 , откуда b<0 ). Если оно верное, то это означает, что любое число является решением исходного неравенства. Если же числовое неравенство b<0 оказывается неверным, то это говорит о том, что исходное линейное неравенство не имеет решений, так как не существует ни одного значения переменной, которое обращало бы его в верное числовое равенство.

Сформулируем приведенные рассуждения в виде алгоритма решения линейных неравенств 0·x+b<0 (≤, >, ≥) :

  • Рассматриваем числовое неравенство b<0 (≤, >, ≥) и
    • если оно верное, то решением исходного неравенства является любое число;
    • если же оно неверное, то исходное линейное неравенство не имеет решений.

А теперь разберемся с этим на примерах.

Пример.

Решите неравенство 0·x+7>0 .

Решение.

Для любого значения переменной x линейное неравенство 0·x+7>0 обратится в числовое неравенство 7>0 . Последнее неравенство верное, следовательно, любое число является решением исходного неравенства.

Ответ:

решением является любое число или (−∞, +∞) .

Пример.

Имеет ли решения линейное неравенство 0·x−12,7≥0 .

Решение.

Если подставить вместо переменной x любое число, то исходное неравенство обратиться в числовое неравенство −12,7≥0 , которое неверное. А это значит, что ни одно число не является решением линейного неравенства 0·x−12,7≥0 .

Ответ:

нет, не имеет.

В заключение этого пункта разберем решения двух линейных неравенств, оба коэффициента которых равны нулю.

Пример.

Какое из линейных неравенств 0·x+0>0 и 0·x+0≥0 не имеет решений, а какое – имеет бесконечно много решений?

Решение.

Если вместо переменной x подставить любое число, то первое неравенство примет вид 0>0 , а второе – 0≥0 . Первое из них неверное, а второе – верное. Следовательно, линейное неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений, а именно, его решением является любое число.

Ответ:

неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений.

Методом интервалов

Вообще, метод интервалов изучается в школьном курсе алгебры позже, чем проходится тема решение линейных неравенств с одной переменной. Но метод интервалов позволяет решать самые разные неравенства, в том числе и линейные. Поэтому, остановимся на нем.

Сразу заметим, что метод интервалов целесообразно применять для решения линейных неравенств с отличным от нуля коэффициентом при переменной x . В противном случае вывод о решении неравенства быстрее и удобнее сделать способом, разобранным в конце предыдущего пункта.

Метод интервалов подразумевает

  • введение функции, отвечающей левой части неравенства, в нашем случае – линейной функции y=a·x+b ,
  • нахождение ее нулей, которые разбивают область определения на промежутки,
  • определение знаков, которые имеют значения функции на этих промежутках, на основе которых делается вывод о решении линейного неравенства.

Соберем эти моменты в алгоритм , раскрывающий как решать линейные неравенства a·x+b<0 (≤, >, ≥) при a≠0 методом интервалов:

  • Находятся нули функции y=a·x+b , для чего решается a·x+b=0 . Как известно, при a≠0 оно имеет единственный корень, который обозначим x 0 .
  • Строится , и на ней изображается точка с координатой x 0 . Причем, если решается строгое неравенство (со знаком < или >), то эту точку делают выколотой (с пустым центром), а если нестрогое (со знаком ≤ или ≥), то ставят обычную точку. Эта точка разбивает координатную прямую на два промежутка (−∞, x 0) и (x 0 , +∞) .
  • Определяются знаки функции y=a·x+b на этих промежутках. Для этого вычисляется значение этой функции в любой точке промежутка (−∞, x 0) , и знак этого значения и будет искомым знаком на промежутке (−∞, x 0) . Аналогично, знак на промежутке (x 0 , +∞) совпадает со знаком значения функции y=a·x+b в любой точке этого промежутка. Но можно обойтись без этих вычислений, а выводы о знаках сделать по значению коэффициента a : если a>0 , то на промежутках (−∞, x 0) и (x 0 , +∞) будут знаки − и + соответственно, а если a>0 , то + и −.
  • Если решается неравенство со знаками > или ≥, то ставится штриховка над промежутком со знаком плюс, а если решаются неравенства со знаками < или ≤, то – со знаком минус. В результате получается , которое и является искомым решением линейного неравенства.

Рассмотрим пример решения линейного неравенства методом интервалов.

Пример.

Решите неравенство −3·x+12>0 .

Решение.

Коль скоро мы разбираем метод интервалов, то им и воспользуемся. Согласно алгоритму, сначала находим корень уравнения −3·x+12=0 , −3·x=−12 , x=4 . Дальше изображаем координатную прямую и отмечаем на ней точку с координатой 4 , причем эту точку делаем выколотой, так как решаем строгое неравенство:

Теперь определяем знаки на промежутках. Для определения знака на промежутке (−∞, 4) можно вычислить значение функции y=−3·x+12 , например, при x=3 . Имеем −3·3+12=3>0 , значит, на этом промежутке знак +. Для определения знака на другом промежутке (4, +∞) можно вычислить значение функции y=−3·x+12 , к примеру, в точке x=5 . Имеем −3·5+12=−3<0 , значит, на этом промежутке знак −. Эти же выводы можно было сделать на основании значения коэффициента при x : так как он равен −3 , то есть, он отрицательный, то на промежутке (−∞, 4) будет знак +, а на промежутке (4, +∞) знак −. Проставляем определенные знаки над соответствующими промежутками:

Так как мы решаем неравенство со знаком >, то изображаем штриховку над промежутком со знаком +, чертеж принимает вид

По полученному изображению делаем вывод, что искомым решением является (−∞, 4) или в другой записи x<4 .

Ответ:

(−∞, 4) или x<4 .

Графическим способом

Полезно иметь представление о геометрической интерпретации решения линейных неравенств с одной переменной. Чтобы его получить, давайте рассмотрим четыре линейных неравенства с одной и той же левой частью: 0,5·x−1<0 , 0,5·x−1≤0 , 0,5·x−1>0 и 0,5·x−1≥0 , их решениями являются соответственно x<2 , x≤2 , x>2 и x≥2 , а также изобразим график линейной функции y=0,5·x−1 .

Несложно заметить, что

  • решение неравенства 0,5·x−1<0 представляет собой промежуток, на котором график функции y=0,5·x−1 располагается ниже оси абсцисс (эта часть графика изображена синим цветом),
  • решение неравенства 0,5·x−1≤0 представляет собой промежуток, на котором график функции y=0,5·x−1 находится ниже оси Ox или совпадает с ней (другими словами, не выше оси абсцисс),
  • аналогично решение неравенства 0,5·x−1>0 есть промежуток, на котором график функции выше оси Ox (эта часть графика изображена красным цветом),
  • и решение неравенства 0,5·x−1≥0 является промежутком, на котором график функции выше или совпадает с осью абсцисс.

Графический способ решения неравенств , в частности линейных, и подразумевает нахождение промежутков, на которых график функции, соответствующей левой части неравенства, располагается выше, ниже, не ниже или не выше графика функции, соответствующей правой части неравенства. В нашем случае линейного неравенства функция, отвечающая левой части, есть y=a·x+b , а правой части – y=0 , совпадающая с осью Ox .

Учитывая приведенную информацию, несложно сформулировать алгоритм решения линейных неравенств графическим способом :

  • Строится график функции y=a·x+b (можно схематически) и
    • при решении неравенства a·x+b<0 определяется промежуток, на котором график ниже оси Ox ,
    • при решении неравенства a·x+b≤0 определяется промежуток, на котором график ниже или совпадает с осью Ox ,
    • при решении неравенства a·x+b>0 определяется промежуток, на котором график выше оси Ox ,
    • при решении неравенства a·x+b≥0 определяется промежуток, на котором график выше или совпадает с осью Ox .

Пример.

Решите неравенство графически.

Решение.

Построим эскиз графика линейной функции . Это прямая, которая убывает, так как коэффициент при x – отрицательный. Еще нам понадобится координата точки его пересечения с осью абсцисс, она является корнем уравнения , который равен . Для наших нужд можно даже не изображать ось Oy . Так наш схематический чертеж будет иметь такой вид

Так как мы решаем неравенство со знаком >, то нас интересует промежуток, на котором график функции выше оси Ox . Для наглядности выделим эту часть графика красным цветом, а чтобы легко определить соответствующий этой части промежуток, подсветим красным цветом часть координатной плоскости, в которой расположена выделенная часть графика, так, как на рисунке ниже:

Интересующий нас промежуток представляет собой часть оси Ox , оказавшуюся подсвеченной красным цветом. Очевидно, это открытый числовой луч . Это и есть искомое решение. Заметим, что если бы мы решали неравенство не со знаком >, а со знаком нестрогого неравенства ≥, то в ответ пришлось бы добавить , так как в этой точке график функции совпадает с осью Ox .y=0·x+7 , что то же самое y=7 , задает на координатной плоскости прямую, параллельную оси Ox и лежащую выше нее. Следовательно, неравенство 0·x+7<=0 не имеет решений, так как нет промежутков, на которых график функции y=0·x+7 ниже оси абсцисс.

А графиком функции y=0·x+0 , что то же самое y=0 , является прямая, совпадающая с осью Ox . Следовательно, решением неравенства 0·x+0≥0 является множество всех действительных чисел.

Ответ:

второе неравенство, его решением является любое действительное число.

Неравенства, сводящиеся к линейным

Огромное количество неравенств с помощью равносильных преобразований можно заменить равносильным линейным неравенством, другими словами, свести к линейному неравенству. Такие неравенства называют неравенствами, сводящимися к линейным .

В школе почти одновременно с решением линейных неравенств рассматривают и несложные неравенства, сводящиеся к линейным. Они представляют собой частные случаи целых неравенств , а именно в их левой и правой части находятся целые выражения, которые представляют собой или линейные двучлены , или преобразуются к ним путем и . Для наглядности приведем несколько примеров таких неравенств: 5−2·x>0 , 7·(x−1)+3≤4·x−2+x , .

Неравенства, которые подобны по виду указанным выше, всегда можно свести к линейным. Это можно сделать путем раскрытия скобок, приведения подобных слагаемых, перестановки слагаемых местами и переноса слагаемых из одной части неравенства в другую с противоположным знаком.

Например, чтобы свести неравенство 5−2·x>0 к линейному, достаточно переставить слагаемые в его левой части местами, имеем −2·x+5>0 . Для сведения второго неравенства 7·(x−1)+3≤4·x−2+x к линейному нужно немного больше действий: в левой части раскрываем скобки 7·x−7+3≤4·x−2+x , после этого приводим подобные слагаемые в обеих частях 7·x−4≤5·x−2 , дальше переносим слагаемые из правой части в левую 7·x−4−5·x+2≤0 , наконец, приводим подобные слагаемые в левой части 2·x−2≤0 . Подобным образом и третье неравенство можно свести к линейному неравенству.

Из-за того, что подобные неравенства всегда можно свести к линейным, некоторые авторы даже называют их тоже линейными. Но все же будем их считать сводящимися к линейным.

Теперь становится понятно, почему подобные неравенства рассматривают вместе с линейными неравенствами. Да и принцип их решения абсолютно такой же: выполняя равносильные преобразования, их можно привести к элементарным неравенствам, представляющим собой искомые решения.

Чтобы решить неравенство подобного вида можно его предварительно свести к линейному, после чего решить это линейное неравенство. Но рациональнее и удобнее поступать так:

  • после раскрытия скобок собрать все слагаемые с переменной в левой части неравенства, а все числа – в правой,
  • после чего привести подобные слагаемые,
  • а дальше – выполнить деление обеих частей полученного неравенства на коэффициент при x (если он, конечно, отличен от нуля). Это даст ответ.

Пример.

Решите неравенство 5·(x+3)+x≤6·(x−3)+1 .

Решение.

Сначала раскроем скобки, в результате придем к неравенству 5·x+15+x≤6·x−18+1 . Теперь приведем подобные слагаемые: 6·x+15≤6·x−17 . Дальше переносим слагаемые с левую часть, получаем 6·x+15−6·x+17≤0 , и снова приводим подобные слагаемые (что приводит нас к линейному неравенству 0·x+32≤0 ) и имеем 32≤0 . Так мы пришли к неверному числовому неравенству, откуда делаем вывод, что исходное неравенство не имеет решений.

Ответ:

нет решений.

В заключение отметим, что существует и масса других неравенств, сводящихся к линейным неравенствам, или к неравенствам рассмотренного выше вида. Например, решение показательного неравенства 5 2·x−1 ≥1 сводится к решению линейного неравенства 2·x−1≥0 . Но об этом будем говорить, разбирая решения неравенств соответствующего вида.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Неравенство это выражение с, ≤, или ≥. Например, 3x - 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно. Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений . Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами .

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств
Для любых вещественных чисел a, b, и c :
Принцип прибавления неравенств : Если a Принцип умножения для неравенств : Если a 0 верно, тогда ac Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами .

Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x - 5 b) 13 - 7x ≥ 10x - 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x - 5 и y 2 = 6 - 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и , или , тогда формируется двойное неравенство . Двойное неравенство, как
-3 и 2x + 5 ≤ 7
называется соединённым , потому что в нём использовано и . Запись -3 Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2 Решите -3 Решение У нас есть

Множество решений {x|x ≤ -1 или x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x - 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или x > 3}, y 1 ≤ y 2 или y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| |x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x| |y| ≥ 1 эквивалентно y ≤ -1 или y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4 Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2| b) |5 - 2x| ≥ 1

Решение
a) |3x + 2|

Множеством решением есть {x|-7/3
b) |5 - 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или x ≥ 3}, или (-∞, 2] .

Третий пример. |1 - х| > 2 |х - 1|.

Решение. Первым делом нужно определить точки, в которых функции обращаются в ноль. Для левого этим числом будет 2, для правого — 1. их нужно отметить на луче и определить промежутки знакопостоянства.

На первом интервале, от минус бесконечности до 1, функция из левой части неравенства принимает положительные значения, а из правой — отрицательные. Под дугой нужно записать рядом два знака «+» и «-».

Следующий промежуток от 1 до 2. На нем обе функции принимают положительные значения. Значит, под дугой два плюса.

Третий интервал от 2 до бесконечности даст такой результат: левая функция — отрицательная, правая — положительная.

С учетом получившихся знаков нужно вычислить значения неравенства для всех промежутков.

На первом получается такое неравенство: 2 - х > - 2 (х - 1). Минус перед двойкой во втором неравенстве получился из-за того, что эта функция отрицательная.

После преобразования неравенство выглядит так: х > 0. Оно сразу дает значения переменной. То есть из этого интервала в ответ пойдет только промежуток от 0 до 1.

На втором: 2 - х > 2 (х - 1). Преобразования дадут такое неравенство: -3х + 4 больше ноля. Его нулем будет значение х = 4/3. С учетом знака неравенства получается, что х должен быть меньше этого числа. Значит, этот интервал уменьшается до промежутка от 1 до 4/3.

Последний дает такую запись неравенства: - (2 - х) > 2 (х - 1). Его преобразование приводит к такому: -х > 0. То есть уравнение верно при х меньшем ноля. Это значит, что на искомом промежутке неравенство не дает решений.

На первых двух промежутках граничным оказалось число 1. Его нужно проверить отдельно. То есть подставить в исходное неравенство. Получается: |2 - 1| > 2 |1 - 1|. Подсчет дает что 1 больше 0. Это верное утверждение, поэтому единица входит в ответ.

Ответ: х лежит в промежутке (0; 4/3).