Преобразуется виду 100 упростим. Как упрощать алгебраические выражения

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Зачастую в задачах требуется привести упрощенный ответ. Хотя и упрощенный, и неупрощенный ответы являются верными, преподаватель может снизить вашу оценку, если вы не упростите ответ. Более того, с упрощенным математическим выражением гораздо легче работать. Поэтому очень важно научиться упрощать выражения.

Шаги

Правильный порядок выполнения математических операций

  1. Запомните правильный порядок выполнения математических операций. При упрощении математического выражения необходимо соблюдать определенный порядок действий, так как некоторые математические операции имеют приоритет над другими и должны быть сделаны в первую очередь (на самом деле несоблюдение правильного порядка выполнения операций приведет вас к неправильному результату). Запомните следующий порядок выполнения математических операций: выражение в скобках, возведение в степень, умножение, деление, сложение, вычитание.

    • Обратите внимание, что знание правильного порядка выполнения операций позволит вам упростить большинство простейших выражений, но для упрощения многочлена (выражения с переменной) необходимо знать специальные приемы (смотрите следующий раздел).
  2. Начните с решения выражения в скобках. В математике скобки указывают на то, что заключенное в них выражение должно быть выполнено в первую очередь. Поэтому при упрощении любого математического выражения начинайте с решения выражения, заключенного в скобки (при этом неважно, какие операции нужно выполнить внутри скобок). Но помните, что работая с выражением, заключенным в скобки, следует соблюдать порядок проведения операций, то есть члены в скобках сначала перемножаются, делятся, складываются, вычитаются и так далее.

    • Например, упростим выражение 2x + 4(5 + 2) + 3 2 - (3 + 4/2) . Здесь начнем с выражений в скобках: 5 + 2 = 7 и 3 + 4/2 = 3 + 2 =5.
      • Выражение во второй паре скобок упрощается до 5, потому что сначала нужно разделить 4/2 (согласно правильному порядку выполнения операций). Если не соблюдать этот порядок, то вы получите неправильный ответ: 3 + 4 = 7 и 7 ÷ 2 = 7/2.
    • Если в скобках есть еще одна пара скобок, начните упрощение с решения выражения во внутренних скобках, а затем переходите к решению выражения во внешних скобках.
  3. Возведите в степень. Решив выражения в скобках, перейдите к возведению в степень (помните, что у степени есть показатель степени и основание степени). Возведите соответствующее выражение (или число) в степень и подставьте результат в данное вам выражение.

    • В нашем примере единственным выражением (числом) в степени является 3 2: 3 2 = 9. В данном вам выражении вместо 3 2 подставьте 9 и вы получите: 2x + 4(7) + 9 - 5.
  4. Умножьте. Помните, что операция умножения может обозначаться следующими символами: «х», «∙» или «*». Но если между числом и переменной (например, 2х) или между числом и числом в скобках (например, 4(7)) нет никаких символов, то это также является операцией умножения.

    • В нашем примере присутствуют две операции умножения: 2x (два умножить на переменную «х») и 4(7) (четыре умножить на семь). Мы не знаем значения х, поэтому выражение 2х оставим как есть. 4(7) = 4 х 7 = 28. Теперь вы можете переписать данное вам выражение так: 2x + 28 + 9 - 5.
  5. Разделите. Помните, что операция деления может обозначаться следующими символами: «/», «÷» или «–» (последний символ вы можете встретить в дробях). Например 3/4 – это три, деленное на четыре.

    • В нашем примере операции деления больше нет, так как вы уже разделили 4 на 2 (4/2) при решении выражения в скобках. Поэтому вы можете перейти к следующему шагу. Помните, что в большинстве выражений нет сразу всех математических операций (только некоторые из них).
  6. Сложите. При сложении членов выражения вы можете начать с самого крайнего (слева) члена, или можете сначала сложить те члены выражения, которые легко складываются. Например, в выражении 49 + 29 + 51 +71 сначала легче сложить 49 + 51 = 100, потом 29 + 71 = 100 и, наконец, 100 + 100 = 200. Гораздо сложнее складывать так: 49 + 29 = 78; 78 + 51 = 129; 129 + 71 = 200.

    • В нашем примере 2x + 28 + 9 + 5 присутствуют две операции сложения. Начнем с самого крайнего (слева) члена: 2x + 28; вы не можете сложить 2х и 28, потому что не знаете значения переменной «х». Поэтому сложите 28 + 9 = 37. Теперь выражение можно переписать так: 2х + 37 - 5.
  7. Вычтите. Это последняя операция в правильном порядке выполнения математических операций. На этом этапе вы также можете прибавлять отрицательные числа или же делать это на этапе сложения членов – это никак не отразится на конечном результате.

    • В нашем примере 2х + 37 - 5 присутствует только одна операция вычитания: 37 - 5 = 32.
  8. На этом этапе, проделав все математические операции, вы должны получить упрощенное выражение. Но если данное вам выражение содержит одну или несколько переменных, то помните, что член с переменной останется таким, как есть. Решение (а не упрощение) выражения с переменной подразумевает нахождение значения этой переменной. Иногда выражения с переменной можно упростить, используя специальные методы (смотрите следующий раздел).

    • В нашем примере окончательный ответ: 2х + 32. Вы не сможете сложить два члена, пока не узнаете значение переменной «х». Узнав значение переменной, вы с легкостью упростите этот двучлен.

    Упрощение сложных выражений

    1. Сложение подобных членов. Помните, что вычитать и складывать можно исключительно подобные члены, то есть члены с одинаковой переменной и одинаковым показателем степени. Например, можно сложить 7x и 5x, но нельзя складывать 7x и 5x 2 (так как здесь показатели степени разные).

      • Это правило распространяется и на члены с несколькими переменными. Например, можно сложить 2xy 2 и -3xy 2 , но нельзя складывать 2xy 2 и -3x 2 y или 2xy 2 и -3y 2 .
      • Рассмотрим пример: x 2 + 3x + 6 - 8x. Здесь подобными членами являются 3x и 8x, поэтому их можно сложить. Упрощенное выражение выглядит так: x 2 - 5x + 6.
    2. Упростите числовую дробь. В такой дроби и в числителе, и в знаменателе находятся числа (без переменной). Числовая дробь упрощается несколькими способами. Во-первых, просто разделите знаменатель на числитель. Во-вторых, разложите числитель и знаменатель на множители и сократите одинаковые множители (так как при делении числа на само себя вы получите 1). Другими словами, если и у числителя, и у знаменателя есть один и тот же множитель, его можно отбросить и получить упрощенную дробь.

      • Например, рассмотрим дробь 36/60. При помощи калькулятора разделите 36 на 60 и получите 0,6. Но вы можете упростить эту дробь и по-другому, разложив числитель и знаменатель на множители: 36/60 = (6х6)/(6х10) = (6/6)*(6/10). Так как 6/6 = 1, то упрощенная дробь: 1 х 6/10 = 6/10. Но эту дробь также можно упростить: 6/10 = (2х3)/(2*5) = (2/2)*(3/5) = 3/5.
    3. Если дробь содержит переменную, можно сократить одинаковые множители с переменной. Разложите и числитель, и знаменатель на множители и сократите одинаковые множители, даже если они содержат переменную (помните, что здесь одинаковые множители могут содержать или не содержать переменную).

      • Рассмотрим пример: (3x 2 + 3x)/(-3x 2 + 15x). Это выражение можно переписать (разложить на множители) в виде: (x + 1)(3x)/(3x)(5 - x). Так как член 3x находится и в числителе, и в знаменателе, его можно сократить, и вы получите упрощенное выражение: (х + 1)/(5 - х). Рассмотрим другой пример: (2x 2 + 4x + 6)/2 = (2(x 2 + 2x + 3))/2 = x 2 + 2x + 3.
      • Обратите внимание, что вы не можете сокращать любые члены – сокращаются только одинаковые множители, которые присутствуют как в числителе, так и в знаменателе. Например, в выражении (х(х + 2))/х переменная (множитель) «х» находится и в числителе, и в знаменателе, поэтому «х» можно сократить и получить упрощенное выражение: (х + 2)/1 = х + 2. Тем не менее, в выражении (х + 2)/х переменную «х» сокращать нельзя (так как в числителе «х» не является множителем).
    4. Раскройте скобки. Для этого умножьте член, стоящий за скобкой, на каждый член в скобках. Иногда это помогает упростить сложное выражение. Это относится как к членам, которые являются простыми числами, так и к членам, которые содержат переменную.

      • Например, 3(x 2 + 8) = 3x 2 + 24, а 3x(x 2 + 8) = 3x 3 + 24x.
      • Обратите внимание, что в дробных выражениях скобки раскрывать не нужно, если и в числителе, и в знаменателе присутствует одинаковый множитель. Например, в выражении (3(x 2 + 8))/3x скобки раскрывать не нужно, так как здесь можно сократить множитель 3 и получить упрощенное выражение (x 2 + 8)/x. С этим выражением легче работать; если бы вы раскрыли скобки, то получили бы следующее сложное выражение: (3x 3 + 24x)/3x.
    5. Разложите на множители многочлены. При помощи этого метода можно упростить некоторые выражения и многочлены. Разложение на множители – это операция, противоположная раскрытию скобок, то есть выражение записывается в виде произведения двух выражений, каждое из которых заключено в скобки. В некоторых случаях разложение на множители позволяет сократить одинаковое выражение. В особых случаях (как правило, с квадратными уравнениями) разложение на множители позволит вам решить уравнение.

      • Рассмотрим выражение x 2 - 5x + 6. Оно раскладывается на множители: (x - 3)(x - 2). Таким образом, если, например, дано выражение (x 2 - 5x + 6)/(2(x - 2)), то вы можете переписать его в виде (x - 3)(x - 2)/(2(x - 2)), сократить выражение (х - 2) и получить упрощенное выражение (х - 3)/2.
      • Разложение многочленов на множители применяется для решения (нахождения корней) уравнений (уравнение – это многочлен, приравненный к 0). Например, рассмотрим уравнение x 2 - 5x + 6 = 0. Разложив его на множители, вы получите (х - 3)(х - 2) = 0. Так как любое выражение, умноженное на 0, равно 0, то мы можем записать так: х - 3 = 0 и х - 2 = 0. Таким образом, х = 3 и х = 2, то есть вы нашли два корня данного вам уравнения.

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения

  1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

    • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

    Приведение подобных членов

    1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

      • Например, упростите выражение 1 + 2x - 3 + 4x .
    2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

      • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
    3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

      • 2x + 4x =
      • 1 - 3 = -2
    4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

      • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
    5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

      • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
        • 5(3x-1) + x((2x)/(2)) + 8 - 3x
        • 15x - 5 + x(x) + 8 - 3x
        • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
        • x 2 + (15x - 3x) + (8 - 5)
        • x 2 + 12x + 3

    Вынесение множителя за скобки

    1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

      • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
    2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

      • В нашем примере разделите каждый член выражения на 3.
        • 9x 2 /3 = 3x 2
        • 27x/3 = 9x
        • -3/3 = -1
        • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
    3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

      • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
    4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

      • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
        • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
        • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
        • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

    Дополнительные методы упрощения

  4. Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
    • √(90)
    • √(9×10)
    • √(9)×√(10)
    • 3×√(10)
    • 3√(10)
  5. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

    • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
      • 6x 3 × 8x 4 + (x 17 /x 15)
      • (6 × 8)x 3 + 4 + (x 17 - 15)
      • 48x 7 + x 2
    • Далее приведено объяснение правила умножения и деления членов со степенью.
      • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
      • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .
  • Всегда помните о знаках (плюс или минус), стоящих перед членами выражения, так как многие испытывают затруднения с выбором правильного знака.
  • Попросите о помощи, если это необходимо!
  • Упрощать алгебраические выражения нелегко, но если вы набьете руку, вы сможете использовать этот навык всю жизнь.

Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

a + b + 4

С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

Любая серьезная задача в математике сводится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

Содержание урока

Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными . Например, в выражении a+b+4 переменными являются буквы a и b . Если вместо этих переменных подставить любые числа, то буквенное выражение a+b+4 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных . Например, изменим значения переменных a и b . Для изменения значений используется знак равенства

a = 2, b = 3

Мы изменили значения переменных a и b . Переменной a присвоили значение 2 , переменной b присвоили значение 3 . В результате буквенное выражение a+b+4 обращается в обычное числовое выражение 2+3+4 значение которого можно найти:

2 + 3 + 4 = 9

Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a×b . Если подставить вместо переменных a и b числа 2 и 3 , то мы получим 6

2 × 3 = 6

Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a×(b + c) можно записать a(b + c) . Применив распределительный закон умножения, получим a(b + c)=ab+ac .

Коэффициенты

В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a . На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a .

Другими словами, выражение 3a является произведением числа 3 и переменной a . Число 3 в этом произведении называют коэффициентом . Этот коэффициент показывает во сколько раз будет увеличена переменная a . Данное выражение можно прочитать как «a три раза» или «трижды а «, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a «

К примеру, если переменная a равна 5 , то значение выражения 3a будет равно 15.

3 × 5 = 15

Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

Букв может быть несколько, например 5abc . Здесь коэффициентом является число 5 . Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc «.

Если вместо вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

5 × 2 × 3 × 4 = 120

Можно мысленно представить, как сначала перемножились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

Знак коэффициента относится только к коэффициенту, и не относится к переменным.

Рассмотрим выражение −6b . Минус, стоящий перед коэффициентом 6 , относится только к коэффициенту 6 , и не относится к переменной b . Понимание этого факта позволит не ошибаться в будущем со знаками.

Найдем значение выражения −6b при b = 3 .

−6b −6×b . Для наглядности запишем выражение −6b в развёрнутом виде и подставим значение переменной b

−6b = −6 × b = −6 × 3 = −18

Пример 2. Найти значение выражения −6b при b = −5

Запишем выражение −6b в развёрнутом виде

−6b = −6 × b = −6 × (−5) = 30

Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

−5a + b это короткая форма записи от −5 × a + b , поэтому для наглядности запишем выражение −5×a+b в развёрнутом виде и подставим значения переменных a и b

−5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13

Иногда буквы записаны без коэффициента, например a или ab . В этом случае коэффициентом является единица:

но единицу по традиции не записывают, поэтому просто пишут a или ab

Если перед буквой стоит минус, то коэффициентом является число −1 . Например, выражение −a на самом деле выглядит как −1a . Это произведение минус единицы и переменной a. Оно получилось следующим образом:

−1 × a = −1a

Здесь кроется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к «невидимой единице», а не к переменной a . Поэтому при решении задач следует быть внимательным.

К примеру, если дано выражение −a и нас просят найти его значение при a = 2 , то в школе мы подставляли двойку вместо переменной a и получали ответ −2 , не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

−a = −1 × a

−1 × a = −1 × 2 = −2

Если дано выражение −a и требуется найти его значение при a = −2 , то мы подставляем −2 вместо переменной a

−a = −1 × a

−1 × a = −1 × (−2) = 2

Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

Пример 4. Найти значение выражения abc при a=2 , b=3 и c=4

Выражение abc 1×a×b×c. Для наглядности запишем выражение abc a , b и c

1 × a × b × c = 1 × 2 × 3 × 4 = 24

Пример 5. Найти значение выражения abc при a=−2 , b=−3 и c=−4

Запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24

Пример 6. Найти значение выражения abc при a=3 , b=5 и c=7

Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

−abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105

Пример 7. Найти значение выражения abc при a=−2 , b=−4 и c=−3

Запишем выражение abc в развёрнутом виде:

−abc = −1 × a × b × c

Подставим значение переменных a , b и c

−abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24

Как определить коэффициент

Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень проста. Достаточно уметь правильно умножать числа.

Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

Пример 1. 7m×5a×(−3)×n

Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть, произведения 7m и 5a записать в виде 7×m и 5×a

7 × m × 5 × a × (−3) × n

Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемножим числа и отдельно перемножим буквы (переменные):

−3 × 7 × 5 × m × a × n = −105man

Коэффициент равен −105 . После завершения буквенную часть желательно расположить в алфавитном порядке:

−105amn

Пример 2. Определить коэффициент в выражении: −a×(−3)×2

−a × (−3) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

Коэффициент равен 6.

Пример 3. Определить коэффициент в выражении:

Перемножим отдельно числа и буквы:

Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен неверно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, должна быть изучена на хорошем уровне.

Слагаемые в буквенных выражениях

При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

1 + 2 + 3 + 4 + 5

Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

1 + 2 − 3 + 4 − 5

В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

1 + 2 + (−3) + 4 + (−5)

Не суть, что числа −3 и −5 теперь со знаком минуса. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице

1 + 2 − 3 + 4 − 5 = −1

1 + 2 + (−3) + 4 + (−5) = −1

Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

7a + 6b − 3c + 2d − 4s

7a + 6b + (−3c) + 2d + (−4s)

При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

Например, если на доске будет записана разность a − b , то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые . А всё потому, что выражение вида a − b математик видит, как сумму a + (−b) . В таком случае выражение становится суммой, а переменные a и (−b) становятся слагаемыми.

Подобные слагаемые

Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть. Например, рассмотрим выражение 7a + 6b + 2a . Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a . Значит слагаемые 7a и 2a являются подобными.

Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Эту операцию называют приведением подобных слагаемых .

Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

Например приведём подобные слагаемые в выражении 3a + 4a + 5a . В данном случае, подобными являются все слагаемые. Сложим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

3a + 4a + 5a = (3 + 4 + 5)×a = 12a

Подобные слагаемые обычно приводят в уме и результат записывают сразу:

3a + 4a + 5a = 12a

Также, можно рассуждать следующим образом:

Было 3 переменные a , к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

Пример 1. 3a + 2a + 6a + 8 a

Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

3a + 2a + 6a + 8a = (3 + 2 + 6 + 8) × a = 19a

Конструкцию (3 + 2 + 6 + 8)×a можно не записывать, поэтому сразу запишем ответ

3a + 2a + 6a + 8a = 19a

Пример 2. Привести подобные слагаемые в выражении 2a + a

Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1 , который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + 1a

Теперь приведем подобные слагаемые. То есть, сложим коэффициенты и результат умножим на общую буквенную часть:

2a + 1a = (2 + 1) × a = 3a

Запишем решение покороче:

2a + a = 3a

2a+a , можно рассуждать и по-другому:

Пример 3. Привести подобные слагаемые в выражении 2a − a

Заменим вычитание сложением:

2a + (−a)

Второе слагаемое (−a) записано без коэффициента, но на самом оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + (−1a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

2a + (−1a) = (2 + (−1)) × a = 1a = a

Обычно записывают короче:

2a − a = a

Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

Было 2 переменные a , вычли одну переменную a , в итоге осталась одна единственная переменная a

Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

(6 + (−3) + 4 + (−8)) × a = −1a = −a

Запишем решение покороче:

6a − 3a + 4a − 8a = −a

Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b . Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a , можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b , можно подчеркнуть двумя линиями:

Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b .

3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

3a + 3b + 7a + 2b = 10a + 5b

Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

Заменим вычитание сложение там, где это можно:

5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержание переменные b , подчеркнем двумя линиями:

Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть:

5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)

Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

Заменим вычитание сложением там, где это можно:

4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

Запишем решение покороче:

4a + 3a − 5 + 2b + 7 = 7a + 2b + 2

Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t , можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

5t + 5t + 2x + 3x + x

Теперь можно привести подобные слагаемые:

5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

Запишем решение покороче:

5t + 2x + 3x + 5t + x = 10t + 6x

Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

Заменим вычитание сложением там, где это можно:

3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

В итоге у нас останется выражение (−4t) + 2t . В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

(−4t) + 2t = ((−4) + 2)×t = −2t

Запишем решение покороче:

Упрощение выражений

«упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его проще и короче.

На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

Рассмотрим следующий пример. Упростить выражение .

Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его проще» .

В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

Что ещё можно сделать? Можно вычислить полученную дробь . Тогда мы получим десятичную дробь 0,5

В итоге дробь упростилась до 0,5.

Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть «а что можно сделать?» . Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

Ещё один важный момент, о котором нужно помнить, заключается в том, что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению . Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

Но мы упростили выражение и получили новое упрощенное выражение . Значение нового упрощенного выражения по-прежнему равно 0,5

Но выражение мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

Рассмотрим несколько примеров.

Пример 1. Упростить выражение 5,21s × t × 2,5

Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st .

Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b , затем отдельно перемножить числа и отдельно перемножить буквы:

0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b

Пример 3. Упростить выражение

Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

Теперь отдельно перемножим числа и отдельно перемножим буквы:

Таким образом, выражение упростилось до −abc. Данное решение можно записать покороче:

При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать , в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

Пример 4. Упростить выражение

Таким образом, выражение упростилось до

Пример 5. Упростить выражение

Перемножим отдельно числа и отдельно буквы:

Таким образом, выражение упростилось до mn .

Пример 6. Упростить выражение

Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число можно перевести в обыкновенные дроби:

Таким образом, выражение упростилось до

Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

Пример 7. Упростить выражение

Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

Таким образом, выражение упростилось до abcd . Если пропустить подробности, то данное решение можно записать значительно короче:

Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

Например, если требуется упростить выражение 5a + 4b , то нельзя записывать следующим образом:

Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

При подстановке любых значений переменных a и b выражение 5a +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

a = 2 , b = 3

Тогда значение выражения будет равно 22

5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

5a + 4b = 5 × 4 × a × b = 20ab

20ab = 20 × 2 × 3 = 120

Получается совсем другое значение выражения. В первом случае получилось 22 , во втором случае 120 . Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

Пример 8. Упростить выражение 0,3a−0,4a+a

0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

или покороче: 0,3a − 0,4a + a = 0,9a

Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a

Пример 9. Упростить выражение −7,5a − 2,5b + 4a

Чтобы упростить данное выражение можно привести подобные слагаемые:

−7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.

Пример 10. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Коэффициент был для удобства вычисления.

Таким образом, выражение упростилось до

Пример 11. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Таким образом, выражение упростилось до .

В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело оно будет следующим образом:

Пример 12. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Таким образом, выражение упростилось до.

Слагаемое осталось без изменения, поскольку его не с чем было складывать.

Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

Ещё одно различие заключается в том, что в подробном решении ответ выглядит как , а в коротком как . На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.

Тождества. Тождественно равные выражения

После того, как мы упростили любое выражение, оно становится проще и короче. Чтобы проверить, верно ли упрощено выражение, достаточно подставить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то выражение упрощено верно.

Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b . Чтобы упростить данное выражение, можно по отдельности перемножить числа и буквы:

2a × 7b = 2 × 7 × a × b = 14ab

Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

Пусть значения переменных a , b будут следующими:

a = 4 , b = 5

Подставим их в первое выражение 2a × 7b

Теперь подставим те же значения переменных в выражение, которое получилось в результате упрощения 2a×7b , а именно в выражение 14ab

14ab = 14 × 4 × 5 = 280

Видим, что при a=4 и b=5 значение первого выражения 2a×7b и значение второго выражения 14ab равны

2a × 7b = 2 × 4 × 7 × 5 = 280

14ab = 14 × 4 × 5 = 280

То же самое произойдет и для любых других значений. Например, пусть a=1 и b=2

2a × 7b = 2 × 1 × 7 × 2 =28

14ab = 14 × 1 × 2 =28

Таким образом, при любых значениях переменных выражения 2a×7b и 14ab равны одному и тому же значению. Такие выражения называют тождественно равными .

Делаем вывод, что между выражениями 2a×7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению.

2a × 7b = 14ab

Равенством называют любое выражение, которые соединено знаком равенства (=).

А равенство вида 2a×7b = 14ab называют тождеством .

Тождеством называют равенство, которое верно при любых значениях переменных.

Другие примеры тождеств:

a + b = b + a

a(b+c) = ab + ac

a(bc) = (ab)c

Да, законы математики, которые мы изучали, являются тождествами.

Верные числовые равенства также являются тождествами. Например:

2 + 2 = 4

3 + 3 = 5 + 1

10 = 7 + 2 + 1

Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения .

Например, мы упростили выражение 2a × 7b , и получили более простое выражение 14ab . Это упрощение можно называть тождественным преобразованием.

Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

0,5 × 5 × a × b = 2,5ab

2,5ab = 2,5ab

В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

Задания для самостоятельного решения:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках