Принцип математической индукции. Решение примеров. Примеры индукции. Метод математической индукции: примеры решения

Лекция 6. Метод математической индукции.

Новые знания в науке и жизни добываются разными способами, но все они (если не углубляться в детали) делятся на два вида – переход от общего к частному и от частного к общему. Первый – это дедукция, второй – индукция. Дедуктивные рассуждения – это то, что в математике обычно называют логическими рассуждениями , и в математической науке дедукция является единственным законным методом исследования. Правила логических рассуждений были сформулированы два с половиной тысячелетия назад древнегреческим учёным Аристотелем. Он создал полный список простейших правильных рассуждений, силлогизмов – «кирпичиков» логики, одновременно указав типичные рассуждения, очень похожие на правильные, однако неправильные (с такими «псевдологическими» рассуждениями мы часто встречаемся в СМИ).

Индукция (induction – по-латыни наведение ) наглядно иллюстрируется известной легендой о том, как Исаак Ньютон сформулировал закон всемирного тяготения после того, как ему на голову упало яблоко. Ещё пример из физики: в таком явлении, как электромагнитная индукция, электрическое поле создает, «наводит» магнитное поле. «Ньютоново яблоко» – типичный пример ситуации, когда один или несколько частных случаев, то есть наблюдения , «наводят» на общее утверждение, общий вывод делается на основании частных случаев. Индуктивный метод является основным для получения общих закономерностей и в естественных, и в гуманитарных науках. Но он имеет весьма существенный недостаток: на основании частных примеров может быть сделан неверный вывод. Гипотезы, возникающие при частных наблюдениях, не всегда являются правильными. Рассмотрим пример, принадлежащий Эйлеру.

Будем вычислять значение трехчлена при некоторых первых значенияхn :

Заметим, что получаемые в результате вычислений числа являются простыми. И непосредственно можно убедиться, что для каждого n от 1 до 39 значение многочлена
является простым числом. Однако приn =40 получаем число 1681=41 2 , которое не является простым. Таким образом, гипотеза, которая здесь могла возникнуть, то есть гипотеза о том, что при каждом n число
является простым, оказывается неверной.

Лейбниц в 17 веке доказал, что при всяком целом положительном n число
делится на 3, число
делится на 5 и т.д. На основании этого он предположил, что при всяком нечётномk и любом натуральном n число
делится наk , но скоро сам заметил, что
не делится на 9.

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще. Вопрос о справедливости утверждения в общем случае удается решить посредством применения особого метода рассуждений, называемого методом математической индукции (полной индукции, совершенной индукции).

6.1. Принцип математической индукции.

♦ В основе метода математической индукции лежит принцип математической индукции , заключающийся в следующем:

1) проверяется справедливость этого утверждения для n =1 (базис индукции) ,

2) предполагается справедливость этого утверждения для n = k , где k – произвольное натуральное число 1 (предположение индукции) , и с учётом этого предположения устанавливается справедливость его для n = k +1.

Доказательство . Предположим противное, то есть предположим, что утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное m , что:

1) утверждение для n =m несправедливо,

2) для всякого n , меньшего m , утверждение справедливо (иными словами, m есть первое натуральное число, для которого утверждение несправедливо).

Очевидно, что m >1, т.к. для n =1 утверждение справедливо (условие 1). Следовательно,
– натуральное число. Выходит, что для натурального числа
утверждение справедливо, а для следующего натурального числаm оно несправедливо. Это противоречит условию 2. ■

Заметим, что в доказательстве использовалась аксиома о том, что в любой совокупности натуральных чисел содержится наименьшее число.

Доказательство, основанное на принципе математической индукции, называется методом полной математической индукции .

Пример 6.1. Доказать, что при любом натуральном n число
делится на 3.

Решение.

1) При n =1 , поэтому a 1 делится на 3 и утверждение справедливо при n =1.

2) Предположим, что утверждение справедливо при n =k ,
, то есть что число
делится на 3, и установим, что при n =k +1 число делится на 3.

В самом деле,

Т.к. каждое слагаемое делится на 3, то их сумма также делится на 3. ■

Пример 6.2. Доказать, что сумма первых n натуральных нечётных чисел равна квадрату их числа, то есть .

Решение. Воспользуемся методом полной математической индукции.

1) Проверяем справедливость данного утверждения при n =1: 1=1 2 – это верно.

2) Предположим, что сумма первых k (
) нечётных чисел равна квадрату числа этих чисел, то есть . Исходя из этого равенства, установим, что сумма первых k +1 нечётных чисел равна
, то есть .

Пользуемся нашим предположением и получаем

. ■

Метод полной математической индукции применяется для доказательства некоторых неравенств. Докажем неравенство Бернулли.

Пример 6.3. Доказать, что при
и любом натуральномn справедливо неравенство
(неравенство Бернулли).

Решение. 1) При n =1 получаем
, что верно.

2) Предполагаем, что при n =k имеет место неравенство
(*). Используя это предположение, докажем, что
. Отметим, что при
это неравенство выполняется и поэтому достаточно рассмотреть случай
.

Умножим обе части неравенства (*) на число
и получим:

То есть (1+
.■

Доказательство методом неполной математической индукции некоторого утверждения, зависящего от n , где
проводится аналогичным образом, но в начале устанавливается справедливость для наименьшего значенияn .

В некоторых задачах явно не сформулировано утверждение, которое можно доказать методом математической индукции. В таких случаях надо самим установить закономерность и высказать гипотезу о справедливости этой закономерности, а затем методом математической индукции проверить предполагаемую гипотезу.

Пример 6.4. Найти сумму
.

Решение. Найдём суммы S 1 , S 2 , S 3 . Имеем
,
,
. Высказываем гипотезу, что при любом натуральномn справедлива формула
. Для проверки этой гипотезы воспользуемся методом полной математической индукции.

1) При n =1 гипотеза верна, т.к.
.

2) Предположим, что гипотеза верна при n =k ,
, то есть
. Используя эту формулу, установим, что гипотеза верна и приn =k +1, то есть

В самом деле,

Итак, исходя из предположения, что гипотеза верна при n =k ,
, доказано, что она верна и при n =k +1, и на основании принципа математической индукции делаем вывод, что формула справедлива при любом натуральном n . ■

Пример 6.5. В математике доказывается, что сумма двух равномерно непрерывных функций является равномерно непрерывной функцией. Опираясь на это утверждение, нужно доказать, что сумма любого числа
равномерно непрерывных функций является равномерно непрерывной функцией. Но поскольку мы ещё не ввели понятие «равномерно непрерывная функция», поставим задачу более абстрактно: пусть известно, что сумма двух функций, обладающих некоторым свойством S , сама обладает свойством S . Докажем, что сумма любого числа функций обладает свойством S .

Решение. Базис индукции здесь содержится в самой формулировке задачи. Сделав предположение индукции, рассмотрим
функций f 1 , f 2 , …, f n , f n +1 , обладающих свойством S . Тогда . В правой части первое слагаемое обладает свойствомS по предположению индукции, второе слагаемое обладает свойством S по условию. Следовательно, их сумма обладает свойством S – для двух слагаемых «работает» базис индукции.

Тем самым утверждение доказано и будем использовать его далее. ■

Пример 6.6. Найти все натуральные n , для которых справедливо неравенство

.

Решение. Рассмотрим n =1, 2, 3, 4, 5, 6. Имеем: 2 1 >1 2 , 2 2 =2 2 , 2 3 <3 2 , 2 4 =4 2 , 2 5 >5 2 , 2 6 >6 2 . Таким образом, можно высказать гипотезу: неравенство
имеет место для каждого
. Для доказательства истинности этой гипотезы воспользуемся принципом неполной математической индукции.

1) Как было установлено выше, данная гипотеза истинна при n =5.

2) Предположим, что она истинна для n =k ,
, то есть справедливо неравенство
. Используя это предположение, докажем, что справедливо неравенство
.

Т. к.
и при
имеет место неравенство

при
,

то получаем, что
. Итак, истинность гипотезы приn =k +1 следует из предположения, что она верна при n =k ,
.

Из пп. 1 и 2 на основании принципа неполной математической индукции следует, что неравенство
верно при каждом натуральном
. ■

Пример 6.7. Доказать, что для любого натурального числа n справедлива формула дифференцирования
.

Решение. При n =1 данная формула имеет вид
, или 1=1, то есть она верна. Сделав предположение индукции, будем иметь:

что и требовалось доказать. ■

Пример 6.8. Доказать, что множество, состоящее из n элементов, имеет подмножеств.

Решение. Множество, состоящее из одного элемента а , имеет два подмножества. Это верно, поскольку все его подмножества – пустое множество и само это множество, и 2 1 =2.

Предположим, что всякое множество из n элементов имеет подмножеств. Если множество А состоит изn +1 элементов, то фиксируем в нём один элемент – обозначим его d , и разобьём все подмножества на два класса – не содержащие d и содержащие d . Все подмножества из первого класса являются подмножествами множества В, получающегося из А выбрасыванием элемента d .

Множество В состоит из n элементов, и поэтому, по предположению индукции, у него подмножеств, так что в первом классеподмножеств.

Но во втором классе подмножеств столько же: каждое из них получается ровно из одного подмножества первого класса добавлением элемента d . Следовательно, всего у множества А
подмножеств.

Тем самым утверждение доказано. Отметим, что оно справедливо и для множества, состоящего из 0 элементов – пустого множества: оно имеет единственное подмножество – самого себя, и 2 0 =1. ■

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

Например, мы каждый день наблюдаем, что Солнце восходит с востока. Поэтому можно быть уверенным, что и завтра оно появится на востоке, а не на западе. Этот вывод мы делаем, не прибегая ни к каким предположениям о причине движения Солнца по небу (более того, само это движение оказывается кажущимся, поскольку на самом деле движется земной шар). И, тем не менее, этот индуктивный вывод правильно описывает те наблюдения, которые мы проведем завтра.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие следовать за тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.


    Суть метода математической индукции

Во многих разделах арифметики, алгебры, геометрии, анализа приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.

Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:

    Предложение А(n) истинно для n=1.

    Из предположения, что А(n) истинно для n=k (где k - любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.

Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.

Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.

Метод математической индукции широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических и многих других задач.


    Метод математической индукции в решении задач на

делимость

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 1 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 2. Доказать истинность предложения

A(n)={число 5 кратно 19}, n - натуральное число.

Решение.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.


    Применение метода математической индукции к

суммированию рядов

Пример 1. Доказать формулу

, n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим


Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .

Решение.

Обозначим искомую сумму , т.е. .

При n=1 гипотеза верна.

Пусть . Покажем, что .

В самом деле,

Задача решена.

Пример 3. Доказать, что сумма квадратов n первых чисел натурального ряда равна .

Решение.

Пусть .

.

Предположим, что . Тогда

И окончательно .

Пример 4. Доказать, что .

Решение.

Если , то

Пример 5. Доказать, что

Решение.

При n=1 гипотеза очевидно верна.

Пусть .

Докажем, что .

Действительно,

    Примеры применения метода математической индукции к

доказательству неравенств

Пример 1. Доказать, что при любом натуральном n>1

.

Решение.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

. (1)

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 3. Доказать, что , где >-1, , n - натуральное число, большее 1.

Решение.

При n=2 неравенство справедливо, так как .

Пусть неравенство справедливо при n=k, где k - некоторое натуральное число, т.е.

. (1)

Покажем, что тогда неравенство справедливо и при n=k+1, т.е.

. (2)

Действительно, по условию, , поэтому справедливо неравенство

, (3)

полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так: . Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).

Пример 4. Доказать, что

(1)

где , , n - натуральное число, большее 1.

Решение.

При n=2 неравенство (1) принимает вид


. (2)

Так как , то справедливо неравенство

. (3)

Прибавив к каждой части неравенства (3) по , получим неравенство (2).

Этим доказано, что при n=2 неравенство (1) справедливо.

Пусть неравенство (1) справедливо при n=k, где k - некоторое натуральное число, т.е.

. (4)

Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.

(5)

Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:

. (6)

Для того чтобы доказать справедливость неравенства (5), достаточно показать, что

, (7)

или, что то же самое,

. (8)

Неравенство (8) равносильно неравенству

. (9)

Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.

Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.

    Метод математической индукции в применение к другим

задачам

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.

Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.

Решение.

При n=2 правильный 2 n - угольник есть квадрат; его сторона . Далее, согласно формуле удвоения


находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2 n - угольника при любом равна

. (1)

Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения


,

откуда следует, что формула (1) справедлива при всех n.

Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Решение.

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 1 А 2 …А n на треугольники.

А n

А 1 А 2

Пусть А 1 А k - одна из диагоналей этого разбиения; она делит n-угольник А 1 А 2 …А n на k-угольник A 1 A 2 …A k и (n-k+2)-угольник А 1 А k A k+1 …A n . В силу сделанного предположения, общее число треугольников разбиения будет равно

(k-2)+[(n-k+2)-2]=n-2;

тем самым наше утверждение доказано для всех n.

Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.

Решение.

Для треугольника это число равно, очевидно, единице: P(3)=1.

Предположим, что мы уже определили числа P(k) для всех k 1 А 2 …А n . При всяком разбиении его на треугольники сторона А 1 А 2 будет стороной одного из треугольников разбиения, третья вершина этого треугольника может совпасть с каждой из точек А 3 , А 4 , …,А n . Число способов разбиения n-угольника, при которых эта вершина совпадает с точкой А 3 , равно числу способов разбиения на треугольники (n-1)-угольника А 1 А 3 А 4 …А n , т.е. равно P(n-1). Число способов разбиения, при которых эта вершина совпадает с А 4 , равно числу способов разбиения (n-2)-угольника А 1 А 4 А 5 …А n , т.е. равно P(n-2)=P(n-2)P(3); число способов разбиения, при которых она совпадает с А 5 , равно P(n-3)P(4), так как каждое из разбиений (n-3)-угольника А 1 А 5 …А n можно комбинировать при этом с каждым из разбиений четырехугольника А 2 А 3 А 4 А 5 , и т.д. Таким образом, мы приходим к следующему соотношению:

Р(n)=P(n-1)+P(n-2)P(3)+P(n-3)P(4)+…+P(3)P(n-2)+P(n-1).

С помощью этой формулы последовательно получаем:

P(4)=P(3)+P(3)=2,

P(5)=P(4)+P(3)P(3)+P(4)+5,

P(6)=P(5)+P(4)P(3)+P(3)P(4)+P(5)=14

и т.д.

Так же при помощи метода математической индукции можно решать задачи с графами.

Пусть на плоскости задана сеть линий, соединяющих между собой какие-то точки и не имеющие других точек. Такую сеть линий мы будем называть картой, заданные точки ее вершинами, отрезки кривых между двумя смежными вершинами - границами карты, части плоскости, на которые она разбивается границами - странами карты.

Пусть на плоскости задана некоторая карта. Мы будем говорить, что она правильно раскрашена, если каждая ее страна закрашена определенной краской, причем любые две страны, имеющие между собой общую границу, закрашены в разные цвета.

Пример 4. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Решение.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

МБОУ лицей «Технико-экономический»

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методическая разработка «Метод математической индукции» составлена для обучающихся 10 класса математического профиля.

Первоочередные цели: познакомить обучающихся с методом математической индукции и научить применять его при решении различных задач.

В методической разработке рассматриваются вопросы элементарной математики: задачи на делимость, доказательство тождеств, доказательство неравенств, предлагаются задачи различной степени сложности, в том числе и задачи, предлагаемые на олимпиадах.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Название метод математической индукции обманчиво – на самом деле этот метод является дедуктивным и дает строгое доказательство утверждениям, угаданным с помощью индукции. Метод математической индукции содействует выявлению связей между различными разделами математики, помогает развитию математической культуры обучающегося.

Определение метода математической индукции. Полная и неполная индукции. Доказательство неравенств. Доказательство тождеств. Решение задач на делимость. Решение различных задач по теме «Метод математической индукции».

ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ

1. М.Л.Галицкий. Углубленное изучение курса алгебры и математического анализа. – М.Просвещение.1986.

2. Л.И.Звавич. Алгебра и начала анализа. Дидактические материалы. М.Дрофа.2001.

3. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

4. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

ЛИТЕРАТУРА ДЛЯ ОБУЧАЮЩИХСЯ

1. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

2. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

КЛЮЧЕВЫЕ СЛОВА

Индукция, аксиома, принцип математической индукции, полная индукция, неполная индукция, утверждение, тождество, неравенство, делимость.

ДИДАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ТЕМЕ

«МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ».

Урок № 1.

Определение метода математической индукции.

Метод математической индукции является одним из высокоэффективных методом поиска новых результатов и доказательства истинности выдвинутых предположений. Хотя этот метод в математике и не нов, но интерес к нему не ослабевает. Впервые в четком изложении метод математической индукции был применен в 17 веке выдающимся французским ученым Блезом Паскалем при доказательстве свойств числового треугольника, носящего с того времени его имя. Однако идея математической индукции была известна еще древним грекам. В основе метода математической индукции лежит принцип математической индукции, который принимается как аксиома. Идею математической индукции рассмотрим на примерах.

Пример № 1.

Квадрат делится отрезком на две части, затем одна из полученных частей делится на две части и так далее. Определить, на какое число частей разделится квадрат через п шагов?

Решение.

После первого шага мы, по условию, получим 2 части. На втором шаге мы одну часть оставляем без изменений, а вторую – делим на 2 части и получаем 3 части. На третьем шаге мы 2 части оставляем без изменений, а третью делим на две части и получаем 4 части. На четвертом шаге мы 3 части оставляем без изменений, а последнюю часть делим на две части и получаем 5 частей. На пятом шаге мы получим 6 частей. Напрашивается предложение, что через п шагов мы получим (п+1) часть. Но это предложение нужно доказать. Предположим, что через к шагов квадрат разобьется на (к+1) часть. Тогда на (к+1) шаге мы к частей оставим без изменения, а (к+1) часть делим на две части и получим (к+2) части. Замечаете, что так можно рассуждать как угодно долго, до бесконечности. То есть, наше предположение, что через п шагов квадрат будет разбит на (п+1) часть, становится доказанным.

Пример № 2.

У бабушки был внучек, который очень любил варенье, и особенно то, что в литровой банке. Но бабушка не разрешала его трогать. И задумал внучек обмануть бабушку. Он решил съедать каждый день по 1/10 л из этой банки и доливать её водой, тщательно перемешав. Через сколько дней бабушка обнаружит обман, если варенье остается прежним на вид при разбавлении его водой на половину?

Решение.

Найдем, сколько чистого варенья останется в банке через п дней. После первого дня в банке останется смесь, состоящая на 9/10 из варенья и на 1/10 из воды. Через два дня из банки исчезнет 1/10 смеси воды и варенья и останется (в 1л смеси находится 9/10л варенья, в 1/10л смеси находится 9/100лваренья)

9/10 – 9/100=81/100=(9/10) 2 л варенья. На третий день из банки исчезнет 1/10л смеси, состоящей на 81/100 из варенья и на19/100 из воды. В 1л смеси находится 81/100л варенья, в 1/10л смеси 81/1000л варенья. 81/100 – 81/1000=

729/1000=(9/10) 3 л варенья останется через 3 дня, а остальное будет занимать вода. Выявляется закономерность. Через п дней в банке останется (9/10) п л варенья. Но это, опять, только наше предположение.

Пусть к – произвольное натуральное число. Предположим, что через к дней в банке останется (9/10) к л варенья. Посмотрим, что же тогда будет в банке еще через день, то есть, через (к+1) день. Из банки исчезнет 1/10л смеси, состоящей из (9/10) к л варенья и воды. В смеси находится (9/10) к л варенья, в 1/10л смеси (9/10) к+1 л варенья. Теперь мы смело можем заявлять, что через п дней в банке останется (9/10) п л варенья. Через 6 дней в банке будет 531444/1000000л варенья, через 7 дней – 4782969/10000000л варенья, то есть меньше половины.

Ответ: через 7 дней бабушка обнаружит обман.

Попытаемся выделить самое основное в решениях рассмотренных задач. Каждую из них мы начинали решать с рассмотрения отдельных или, как говорят, частных случаев. Затем на основе наших наблюдений, мы высказывали некоторое предположение Р(п) , зависящее от натурального п.

    утверждение проверили, то есть доказали Р(1), Р(2), Р(3);

    предположили, что Р(п) справедливо при п=к и вывели, что тогда оно будет справедливо и при следующем п, п=к+1.

А затем рассуждали примерно так: Р(1) верно, Р(2) верно, Р(3) верно, Р(4) верно,…, значит верно Р(п).

Принцип математической индукции.

Утверждение Р(п) , зависящее от натурального п , справедливо при всех натуральных п , если

1) доказана справедливость утверждения при п=1;

2) из предположения справедливости утверждения Р(п) при п=к следует

справедливость Р(п) при п=к+1.

В математике принцип математической индукции выбирается, как правило, в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства. Метод доказательства по принципу математической индукции обычно называется методом математической индукции. Заметим, что этот метод широко применяется при доказательстве теорем, тождеств, неравенств при решении задач на делимость и многих других задач.

Урок № 2

Полная и неполная индукция.

В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта, например, утверждение «Каждое двузначное четное число является суммой двух простых чисел». Метод доказательства, при котором мы проверяем утверждение для конечного числа случаев, называется полной математической индукцией. Этот метод применим сравнительно редко, так как утверждения чаще всего рассматриваются на бесконечных множествах. Например, теорема «Любое четное число равно сумме двух простых чисел» до сих пор ни доказана, ни опровергнута. Если бы мы даже проверили эту теорему для первого миллиарда, это бы ни на шаг не приблизило бы нас к её доказательству.

В естественных науках применяют неполную индукцию, проверяя эксперимент несколько раз, переносят результат на все случаи.

Пример № 3.

Угадаем с помощью неполной индукции формулу для суммы кубов натуральных чисел.

Решение.

1 3 =1; 1 3 +2 3 =(1+2) 2 ; 1 3 +2 3 +3 3 =(1+2+3) 2 ; 1 3 +2 3 +3 3 +4 3 =(1+2+3+4) 2 ;

1 3 +2 3 +3 3 +4 3 +5 3 =(1+2+3+4+5) 2 ; …; 1 3 +2 3 +…+n 3 =(1+2+…+n) 2 .

Доказательство.

Пусть верно для п=к.

Докажем, что верно для п=к+1.

Вывод: формула для суммы кубов натуральных чисел верна для любого натурального п.

Пример № 4.

Рассмотрите равенства и догадайтесь, к какому общему закону подводят эти примеры.

Решение.

1=0+1

2+3+4=1+8

5+6+7+8+9=8+27

10+11+12+13+14+15+16=27+64

17+18+19+20+21+22+23+24+25=64+125

……………………………………………………………..

Пример № 5.

Запишите в виде суммы следующие выражения:

1)
2)
3)
; 4)
.

греческая буква «сигма».

Пример № 6.

Запишите следующие суммы с помощью знака
:

2)

Пример № 7.

Запишите следующие выражения в виде произведений:

1)

3)
4)

Пример № 8.

Запишите следующие произведения с помощью знака

(прописная греческая буква «пи»)

1)
2)

Пример № 9.

Вычисляя значение многочлена f ( n )= n 2 + n +11 , при п=1,2,3,4.5,6,7 можно сделать предположение, что при любом натуральном п число f ( n ) простое.

Верно ли это предположение?

Решение.

Если каждое слагаемое суммы делится на число, то сумма делится на это число,
не является простым числом при любом натуральном п.

Разбор конечного числа случаев играет важную роль в математике: не давая доказательства того или иного утверждения, он помогает угадать правильную формулировку этого утверждения, если она ещё неизвестна. Именно так член Петербургской академии наук Гольдбах пришел к гипотезе, что любое натуральное число, начиная с двух, является суммой не более чем трёх простых чисел.

Урок № 3.

Метод математической индукции позволяет доказывать различные тождества.

Пример № 10. Докажем, что для всех п выполняется тождество

Решение.

Положим


Нам надо доказать, что



Докажем, что Тогда из истинности тождества

следует истинность тождества

По принципу математической индукции доказана истинность тождества при всех п .

Пример № 11.

Докажем тождество

Доказательство.


почленно получившиеся равенства.

;
. Значит, данное тождество истинно для всех
п .

Урок № 4.

Доказательство тождеств методом математической индукции.

Пример № 12. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что равенство верно при всех п .

Пример № 13. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что утверждение верно при любом натуральном п .

Пример № 14. Докажем тождество

Доказательство.


Пример № 15. Докажем тождество

1) п=1;

2) для п=к выполняется равенство

3) докажем, что равенство выполняется для п=к+1:

Вывод: тождество справедливо для любого натурального п.

Пример № 16. Докажем тождество

Доказательство.

Если п=1 , то

Пусть тождество выполняется при п=к.

Докажем, что тождество выполняется при п=к+1.



Тогда тождество справедливо для любого натурального п .

Урок № 5.

Доказательство тождеств методом математической индукции.

Пример № 17. Докажем тождество

Доказательство.

Если п=2 , то получаем верное равенство:

Пусть равенство верно при п=к:

Докажем справедливость утверждения при п=к+1.

Согласно принципу математической индукции, тождество доказано.

Пример № 18. Докажем тождество
при п≥2.

При п=2 это тождество перепишется в очень простом виде

и, очевидно, верно.

Пусть при п=к действительно

.

Докажем справедливость утверждения при п=к+1, то есть выполняется равенство: .

Итак, мы доказали, что тождество верно при любом натуральном п≥2.

Пример № 19. Докажем тождество

При п=1 получим верное равенство:

Предположим, что при п=к получаем также верное равенство:

Докажем, что наблюдается справедливость равенства при п=к+1:

Тогда тождество справедливо при любом натуральном п .

Урок № 6.

Решение задач на делимость.

Пример № 20. Доказать методом математической индукции, что

делится на 6 без остатка.

Доказательство.

При п=1 наблюдается деление на 6 без остатка,
.

Пусть при п=к выражение
кратно
6.

Докажем, что при п=к+1 выражение
кратно
6 .

Каждое слагаемое кратно 6 , следовательно сумма кратна 6 .

Пример № 21.
на
5 без остатка.

Доказательство.

При п=1 выражение делится без остатка
.

Пусть при п=к выражение
также делится на
5 без остатка.

При п=к+1 делится на 5 .

Пример № 22. Доказать делимость выражения
на
16.

Доказательство.

При п=1 кратно 16 .

Пусть при п=к
кратно
16.

При п=к+1

Все слагаемые делятся на 16: первое – очевидно, второе по предположению, а в третьем – в скобках стоит четное число.

Пример № 23. Доказать делимость
на
676.

Доказательство.

Предварительно докажем, что
делится на
.

При п=0
.

Пусть при п=к
делится на
26 .

Тогда при п=к+1 делится на 26 .

Теперь проведем доказательство утверждения, сформулированного в условии задачи.

При п=1 делится на 676.

При п=к верно, что
делится на
26 2 .

При п=к+1 .

Оба слагаемых делятся на 676 ; первое – потому, что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции.

Урок № 7.

Решение задач на делимость.

Пример № 24.

Доказать, что
делится на 5 без остатка.

Доказательство.

При п=1
делится на
5.

При п=к
делится на
5 без остатка.

При п=к+1 каждое слагаемое делится на 5 без остатка.

Пример № 25.

Доказать, что
делится на 6 без остатка.

Доказательство.

При п=1
делится на
6 без остатка.

Пусть при п=к
делится на
6 без остатка.

При п=к+1 делится на 6 без остатка, так как каждое слагаемое делится на 6 без остатка: первое слагаемое – по предположению индукции, второе – очевидно, третье – потому, что
четное число.

Пример № 26.

Доказать, что
при делении на 9 дает остаток 1 .

Доказательство.

Докажем, что
делится на 9 .

При п=1
делится на 9 . Пусть при п=к
делится на
9 .

При п=к+1 делится на 9 .

Пример № 27.

Доказать, что делится на 15 без остатка.

Доказательство.

При п=1 делится на 15 .

Пусть при п=к делится на 15 без остатка.

При п=к+1

Первое слагаемое кратно 15 по предположению индукции, второе слагаемое кратно 15 – очевидно, третье слагаемое кратно 15 , так как
кратно
5 (доказано в примере № 21), четвертое и пятое слагаемые также кратны 5 , что очевидно, тогда сумма кратна 15 .

Урок № 8-9.

Доказательство неравенств методом математической индукции

Пример № 28.
.

При п=1 имеем
- верно.

Пусть при п=к
- верное неравенство.

При п=к+1

Тогда неравенство справедливо для любого натурального п .

Пример № 29. Доказать, что справедливо неравенство
при любом п .

При п=1 получим верное неравенство 4 >1.

Пусть при п=к справедливо неравенство
.

Докажем, что при п=к+1 справедливо неравенство

Для любого натурального к наблюдается неравенство .

Если
при
то



Пример № 30.

при любом натуральном п и любом

Пусть п=1
, верно.

Предположим, что неравенство выполняется при п=к :
.

При п=к+1

Пример № 31. Доказать справедливость неравенства

при любом натуральном п .

Докажем сначала, что при любом натуральном т справедливо неравенство

Умножим обе части неравенства на
. Получим равносильное неравенство или
;
; - это неравенство выполняется при любом натуральном т .

При п=1 исходное неравенство верно
;
;
.

Пусть неравенство выполняется при п=к:
.

При п=к+1

Урок № 10.

Решение задач по теме

Метод математической индукции.

Пример № 32. Доказать неравенство Бернулли.

Если
, то для всех натуральных значений п выполняется неравенство

Доказательство.

При п=1 доказываемое неравенство принимает вид
и, очевидно, справедливо. Предположим, что оно верно при
п=к , то есть что
.

Так как по условию
, то
, и потому неравенство не изменит смысла при умножении обеих его частей на
:

Так как
, то получаем, что

.

Итак, неравенство верно при п=1 , а из его истинности при п=к следует, что оно истинно и при п=к+1. Значит, в силу математической индукции оно имеет место для всех натуральных п.

Например,

Пример № 33. Найти все натуральные значения п , для которых справедливо неравенство

Решение.

При п=1 неравенство справедливо. При п=2 неравенство также справедливо.

При п=3 неравенство уже не выполняется. Лишь при п=6 неравенство выполняется, так что за базис индукции можно взять п=6.

Предположим, что неравенство справедливо для некоторого натурального к:

Рассмотрим неравенство

Последнее неравенство выполняется, если
Контрольная работа по теме п=1 задана рекуррентно: п≥5 , где п - -натуральное число.


Савельева Екатерина

В работе рассматривается применение метода математической индукции в решении задач на делимость, к суммированию рядов. Рассматриваются примеры применения метода математической индукции к доказательству неравенств и к решению геометрических задач. Работа иллюстрирована презентацией.

Скачать:

Предварительный просмотр:

Министерство науки и образования РФ

Государственное образовательное учреждение

средняя общеобразовательная школа № 618

По курсу: алгебра и начала анализа

Теме проектной работы

«Метод математической индукции и его применение к решению задач»

Работу выполнила : Савельева Е, 11В класс

Руководитель : Макарова Т.П., учитель математики ГОУ СОШ №618

1. Введение.

2.Метод математической индукции в решении задач на делимость.

3.Применение метода математической индукции к суммированию рядов.

4.Примеры применения метода математической индукции к доказательству неравенств.

5.Применение метода математической индукции к решению геометрических задач.

6.Список использованной литературы.

Введение

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному. Метод математической индукции можно сравнить с прогресс-сом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно. Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени.А ведь это так важно - уметь размышлять индуктивно. Применение этого принципа при решении задач и доказательстве теорем находится в одном ряду с рассмотрением в школьной практике и других математических принципов: исключенного третьего, включения-исключения, Дирихле и др. В этом реферате содержатся задачи из разных разделов математики, в которых основным инструментом является использование метода математической индукции. Говоря о важ-ности этого метода, А.Н. Колмогоров отмечал, что «понимание и умение применять принцип математической индукции является хорошим критерием зрелости, которая совершенно необходима математику». Метод индукции в широком его понимании состоит в переходе от частных наблюдений к универсальной, общей закономерности или обшей формулировке. В таком толковании метод — это, конечно, основной прием проведения исследований в любой экспериментальной естественнонаучной

деятельности человека. Метод (принцип) математической индукции в простейшей его форме применяется тогда, когда нужно доказать некоторое утверждение для всех натуральных чисел.

Задача 1. В свой статье «Как я стал математиком» А.Н. Колмогоров пишет: «Радость математического «открытия» я познал рано, подметив в возрасте пяти-шести лет закономерность

1 =1 2 ,

1 + 3 = 2 2 ,

1 + 3 + 5 = З 2 ,

1 + 3 + 5 + 7 = 4 2 и так далее.

В школе издавался журнал "Весенние ласточки". В нем мое открытие было опубликовано...»

Какое именно доказательство было приведено в этом журнале, мы не знаем, но началось все с частных наблюдений. Сама гипотеза, которая, наверняка, возникла после обнаружения этих частных равенств, состоит в том, что формула

1 + 3 + 5 + ... + (2n - 1) = п 2

верна при любом заданном числе п = 1, 2, 3, ...

Для доказательства этой гипотезы достаточно установить два факта. Во-первых, для п = 1 (и даже для п = 2, 3, 4) нужное утверждение верно. Во-вторых, предположим, что утверждение верно при п = к, и убедимся, что тогда оно верно и для п = к + 1:

1 + 3 + 5+…+ (2к - 1) + (2к + 1) = (1 + 3 + 5 + ... + (2к - 1)) + (2к + 1) = к 2 + (2к + 1) = (к + I) 2 .

Значит, доказываемое утверждение верно для всех значений п: для п = 1 оно верно (это проверено), а в силу второго факта — для п = 2, откуда для п = 3 (в силу того же, второго факта) и т.д.

Задача 2. Рассмотрим все возможные обыкновенные дроби с числителем 1 и любым (целым положи-

тельным) знаменателем: Доказать,что для любого п > 3 можно представить единицу в виде суммы п различных дробей такого вида.

Решение, Проверим сначала данное утверждение при п = 3; имеем:

Следовательно, базовое утверждение выполнено

Предположим теперь, что интересующее нас утверждение верно для какого-то числа к, и докажем, что оно верно и для следующего за ним числа к + 1. Другими словами, предположим, что существует представление

в котором k слагаемых и все знаменатели разные. Докажем, что тогда можно получить представление единицы в виде суммы из к + 1 дробей нужного вида. Будем считать, что дроби убывают, то есть знаменатели (в представлении единицы суммой к слагаемых) возрастают слева направо так, что т — наибольший из знаменателей. Мы получим нужное нам представление в виде суммы + 1)-й дроби, если разобьем одну дробь, например последнюю, на две. Это можно сделать, так как

И поэтому

Кроме того, все дроби остались различными, так как т было наибольшим знаменателем, а т + 1 > т , и

т(т + 1) > т.

Таким образом, нами установлено:

  1. при п = 3 данное утверждение верно;
  1. если интересующее нас утверждение верно для к,
    то оно верно и для к + 1.

На этом основании мы можем утверждать, что рассматриваемое утверждение верно для всех натуральных чисел, начиная с трех. Более того, из приведенного доказательства следует и алгоритм отыскания нужного разбиения единицы. (Какой это алгоритм? Представьте число 1 в виде суммы 4, 5, 7 слагаемых самостоятельно.)

При решении предыдущих двух задач были сделаны два шага. Первый шаг называют базисом индукции, второй — индуктивным переходом или шагом индукции. Второй шаг наиболее важен, и он включает в себя предположение (утверждение верно при п = к) и заключение (утверждение верно при п = к + 1). Сам параметр п называется параметром индукции. Эта логическая схема (прием), позволяющая заключить, что рассматриваемое утверждение верно для всех натуральных чисел (или для всех, начиная с некоторого), так как справедливы и базис, и переход, называется принципом математической индукции, на котором и основан метод математической индукции. Сам термин «индукция» происходит от латинского слова induktio (наведение), которое означает переход от единичного знания об отдельных предметах данного класса к общему выводу о всех предметах данного класса, что является одним из основных методов познания.

Принцип математической индукции, именно в привычной форме двух шагов, впервые появился в 1654 году в работе Блеза Паскаля «Трактат об арифметическом треугольнике», в которой индукцией доказывался простой способ вычисления числа сочетаний (биномиальных коэффициентов). Д. Пойа в книге цитирует Б. Паскаля с небольшими изменениями, данными в квадратных скобках:

«Несмотря на то, что рассматриваемое предложение [явная формула для биномиальных коэффициентов] содержит бесчисленное множество частных случаев, я дам для нее совсем короткое доказательство, основанное на двух леммах.

Первая лемма утверждает, что предположение верно для основания — это очевидно. [При п = 1 явная формула справедлива...]

Вторая лемма утверждает следующее: если наше предположение верно для произвольного основания [для произвольного тг], то оно будет верным и для следующего за ним основания [для п + 1].

Из этих двух лемм необходимо вытекает справедливость предложения для всех значений п. Действительно, в силу первой леммы оно справедливо для п = 1; следовательно, в силу второй леммы оно справедливо для п = 2; следовательно, опять-таки в силу второй леммы, оно справедливо для п = 3 и так до бесконечности».

Задача 3. Головоломка «Ханойские башни» состоит из трех стержней. На одном из стержней находится пирамидка (рис. 1), состоящая из нескольких колец разного диаметра, уменьшающихся снизу вверх

Рис 1

Эту пирамидку нужно переместить на один из других стержней, перенося каждый раз только одно кольцо и не помещая большее кольцо на меньшее. Можно ли это сделать?

Решение. Итак, нам необходимо ответить на вопрос: можно ли переместить пирамидку, состоящую из п колец разного диаметра, с одного стержня на другой, соблюдая правила игры? Теперь задача нами, как говорят, параметризована (введено в рассмотрение натуральное число п), и ее можно решать методом математической индукции.

  1. База индукции. При п = 1 все ясно, так как пирамидку из одного кольца очевидно можно переместить на любой стержень.
  2. Шаг индукции. Предположим, что мы умеем перемещать любые пирамидки с числом колец п = к.
    Докажем, что тогда мы сможем переместить и пира мидку с п = к + 1.

Пирамидку из к колец, лежащих на самом большом + 1)-м кольце, мы можем, согласно предположению, переместить на любой другой стержень. Сделаем это. Неподвижное + 1)-е кольцо не будет нам мешать провести алгоритм перемещения, так как оно самое большое. После перемещения к колец, переместим это самое большое + 1)-е кольцо на оставшийся стержень. И затем опять применим известный нам по индуктивному предположению алгоритм перемещения к колец, и переместим их на стержень с лежащим внизу + 1)-м кольцом. Таким образом, если мы умеем перемещать пирамидки с к кольцами, то умеем перемещать пирамидки и с к + 1 кольцами. Следовательно, согласно принципу математической индукции, всегда можно переместить нужным образом пирамидку, состоящую из п колец, где п > 1.

Метод математической индукции в решении задач на делимость.

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Задача 4 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как, a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность.Значит, четно при всех натуральных значениях n.

Задача 3. Доказать, что число З 3 + 3 - 26n — 27 при произвольном натуральном п делится на 26 2 без остатка.

Решение. Предварительно докажем по индукции вспомогательное утверждение, что 3 3n+3 — 1 делится на 26 без остатка при п > 0.

  1. База индукции. При п = 0 имеем: З 3 - 1 = 26 —делится на 26.

Шаг индукции. Предположим, что 3 3n + 3 - 1 делится на 26 при п = к, и докажем, что в этом случае утверждение будет верно при п = к + 1. Так как 3

то из индуктивного предположения заключаем, что число 3 3k + 6 - 1 делится на 26.

Теперь докажем утверждение, сформулированное в условии задачи. И снова по индукции.

  1. База индукции. Очевидно, что при п = 1 утверждение верно: так как 3 3+3 - 26 - 27 = 676 = 26 2 .
  2. Шаг индукции. Предположим, что при п = к
    выражение 3 3k + 3 - 26k - 27 делится на 26 2 без остатка, и докажем, что утверждение верно при п = к + 1,
    то есть что число

делится на 26 2 без остатка. В последней сумме оба слагаемых делятся без остатка на 26 2 . Первое — потому что мы доказали делимость выражения, стоящего в скобках, на 26; второе — по предположению индукции. В силу принципа математической индукции, нужное утверждение полностью доказано.

Применение метода математической индукции к суммированию рядов.

Задача 5. Доказать формулу

N - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим

Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Задача 6. На доске написаны два числа: 1,1. Вписав между числами их сумму, мы получим числа 1, 2, 1. Повторив эту операцию еще раз, получим числа 1, 3, 2, 3, 1. После трех операций будут числа 1, 4, 3, 5, 2, 5, 3, 4, 1. Какова будет сумма всех чисел на доске после 100 операций?

Решение. Выполнять все 100 операций было бы очень трудоемким и долгим занятием. Значит, нужно попытаться найти какую-то общую формулу для суммы S чисел после п операций. Посмотрим на таблицу:

Заметили ли вы здесь какую-нибудь закономерность? Если нет, можно сделать еще один шаг: после четырех операций будут числа

1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1,

сумма которых S 4 равна 82.

В действительности можно не выписывать числа, а сразу сказать, как изменится сумма после добавления новых чисел. Пусть сумма была равна 5. Какой она станет, когда добавятся новые числа? Разобьем каждое новое число в сумму двух старых. Например, от 1, 3, 2, 3, 1 мы переходим к 1,

1 + 3, 3, 3 + 2, 2, 2 + 3, 3, 3 + 1, 1.

То есть каждое старое число (кроме двух крайних единиц) входит теперь в сумму три раза, поэтому новая сумма равна 3S - 2 (вычитаем 2, чтобы учесть недостающие единицы). Поэтому S 5 = 3S 4 - 2 = 244, и вообще

Какова же общая формула? Если бы не вычитание двух единиц, то каждый раз сумма увеличивалась бы в три раза, как в степенях тройки (1, 3, 9, 27, 81, 243, ...). А наши числа, как теперь видно, на единицу больше. Таким образом, можно предположить, что

Попробуем теперь доказать это по индукции.

База индукции. Смотри таблицу (для п = 0, 1, 2, 3).

Шаг индукции. Предположим, что

Докажем тогда, что S к + 1 = З к + 1 + 1.

Действительно,

Итак, наша формула доказана. Из нее видно, что после ста операций сумма всех чисел на доске будет равна З 100 + 1.

Рассмотрим один замечательный пример применения принципа математической индукции, в котором сначала нужно ввести два натуральных параметра и затем провести индукцию по их сумме.

Задача 7. Доказать, что если = 2, х 2 = 3 и для всякого натурального п > 3 имеет место соотношение

х п = Зх п - 1 - 2х п - 2 ,

то

2 п - 1 + 1, п = 1, 2, 3, ...

Решение. Заметим, что в этой задаче исходная последовательность чисел {х п } определяется по индукции, поскольку члены нашей последовательности, кроме двух первых, задаются индуктивно, то есть через предыдущие. Так заданные последовательности называют рекуррентными, и в нашем случае эта последовательность определяется (заданием первых двух ее членов) единственным образом.

База индукции. Она состоит из проверки двух утверждений: при п = 1 и п = 2.В обоих случаях утверждение справедливо по условию.

Шаг индукции. Предположим, что для п = к - 1 и п = к утверждение выполнено, то есть

Докажем тогда справедливость утверждения для п = к + 1. Имеем:

х 1 = 3(2 + 1)- 2(2 + 1) = 2+1, что и требовалось доказать.

Задача 8. Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов рекуррентной последовательности чисел Фибоначчи:

при к > 2.

Решение. Пусть п — натуральное число. Будем проводить индукцию по п.

База индукции. При п = 1 утверждение справедливо, поскольку единица сама является числом Фибоначчи.

Шаг индукции. Предположим, что все натуральные числа, меньшие некоторого числа п, можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. Найдем наибольшее число Фибоначчи F т , не превосходящее п; таким образом, F т п и F т +1 > п.

Поскольку

По предположению индукции число п- F т может быть представлено в виде суммы 5 нескольких различных членов последовательности Фибоначчи, причем из последнего неравенства следует, что все члены последовательности Фибоначчи, участвующие в сумме 8, меньше F т . Поэтому разложение числа п = 8 + F т удовлетворяет условию задачи.

Примеры применения метода математической индукции к доказательству неравенств.

Задача 9. (Неравенство Бернулли.) Докажите, что при х > -1, х 0, и при целом п > 2 справедливо неравенство

(1 + х) п > 1 + хп.

Решение. Доказательство снова будем проводить по индукции.

1. База индукции. Убедимся в справедливости неравенства при п = 2. Действительно,

(1 + х) 2 = 1 + 2х + х 2 > 1 + 2х.

2. Шаг индукции. Предположим, что для номера п = к утверждение справедливо, то есть

(1 + х) к > 1 + хк,

Где к > 2. Докажем его при п = к + 1. Имеем: (1 + х) к + 1 = (1 + х) к (1 + х)>(1 + кх){1 + х) =

1 + (к + 1)х + кх 2 > 1 + (к + 1)х.

Итак, на основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого п > 2.

Не всегда в условиях задач, решаемых с помощью метода математической индукции, бывает четко сформулирован общий закон, который нужно доказывать. Иногда приходится путем наблюдений частных случаев сначала обнаружить (догадаться), к какому общему закону они приводят, и только потом доказывать высказанную гипотезу методом математической индукции. Кроме того, переменная индукции может быть замаскированной, и прежде, чем решать задачу, необходимо определить, по какому параметру будет проводиться индукция. В качестве примеров рассмотрим следующие задачи.

Задача 10. Доказать, что

при любом натуральном п > 1.

Решение, Попробуем доказать это неравенство методом математической индукции.

Базис индукции проверяется без труда:1+

По предположению индукции

и нам остается доказать, что

Если воспользоваться индуктивным предположением, то мы будем утверждать, что

Хотя это равенство на самом деле верно, оно не дает нам решения задачи.

Попробуем доказать более сильное утверждение, чем это требуется в исходной задаче. А именно, докажем, что

Может показаться, что доказывать это утверждение методом индукции дело безнадежное.

Однако при п = 1 имеем: утверждение верно. Для обоснования индуктивного шага предположим, что

и докажем тогда, что

Действительно,

Таким образом, нами доказано более сильное утверждение, из которого сразу же следует утверждение, содержащееся в условии задачи.

Поучительным здесь является то, что хотя нам и пришлось доказывать более сильное утверждение, чем это требуется в задаче, но мы могли пользоваться и более сильным предположением в индуктивном шаге. Этим и объясняется, что прямолинейное применение принципа математической индукции не всегда приводит к цели.

Ситуация, возникшая при решении задачи, получила название парадокса изобретателя. Сам парадокс состоит в том, что более сложные планы могут быть реализованы с большим успехом, если они базируются на более глубоком понимании существа дела.

Задача 11. Докажите, что 2 т + п - 2 тп при любых натуральных тип.

Решение. Здесь мы имеем два параметра. Поэтому можно попробовать провести так называемую двойную индукцию (индукция внутри индукции).

Будем проводить индуктивное рассуждение по п.

1. База индукции по п. При п = 1 нужно проверить, что 2 т ~ 1 > т. Для доказательства этого неравенства воспользуемся индукцией по т.

а) База индукции по т. При т = 1 выполняется
равенство, что допустимо.

б) Шаг индукции по т. Предположим, что при т = к утверждение верно, то есть 2 к ~ 1 > к. Тогда до
кажем, что утверждение будет верным и при
т = к + 1.
Имеем:

при натуральных к.

Таким образом, неравенство 2 выполняется при любом натуральном т.

2. Шаг индукции по п. Выберем и зафиксируем какое-нибудь натуральное число т. Предположим, что при п = I утверждение справедливо (при фиксированном т), то есть 2 т +1 ~ 2 > т1, и докажем, что тогда утверждение будет справедливым и при п = l + 1.
Имеем:

при любых натуральных т и п.

Следовательно, на основании принципа математической индукции (по п) утверждение задачи верно при любых п и при любом фиксированном т. Таким образом, данное неравенство выполняется при любых натуральных тип.

Задача 12. Пусть т, п и к — натуральные числа, причем т > п. Какое из двух чисел больше:

В каждом выражении к знаков квадратного корня, т и п чередуются.

Решение. Докажем сначала некоторое вспомогательное утверждение.

Лемма. При любых натуральных т и п (т > п) и неотрицательном (не обязательно целом) х справедливо неравенство

Доказательство. Рассмотрим неравенство

Это неравенство справедливо, так как оба сомножителя в левой части положительны. Раскрывая скобки и преобразовывая, получаем:

Извлекая квадратный корень из обеих частей последнего неравенства, получим утверждение леммы. Итак, лемма доказана.

Перейдем теперь к решению задачи. Обозначим первое из данных чисел через а, а второе — через Ь к . Докажем, что а при любом натуральном к. Доказательство будем проводить методом математической индукции отдельно для четных и нечетных к.

База индукции. При к = 1 имеем неравенство

у[т > у/п , справедливое в силу того, что т > п. При к = 2 требуемое получается из доказанной леммы подстановкой х = 0.

Шаг индукции. Предположим, при некотором к неравенство а >b к справедливо. Докажем, что

Из предположения индукции и монотонности квадратного корня имеем:

С другой стороны, из доказанной леммы следует,

Объединяя два последних неравенства, получаем:

Согласно принципу математической индукции, утверждение доказано.

Задача 13. (Неравенство Коши.) Докажите, что для любых положительных чисел..., а п справедливо неравенство

Решение. При п = 2 неравенство

о среднем арифметическом и среднем геометрическом (для двух чисел) будем считать известным. Пусть п= 2 , к = 1, 2, 3, ... и сначала проведем индукцию по к. База этой индукции имеет место Предположив теперь, что нужное неравенство уже установлено для п = 2 , докажем его для п = 2 . Имеем (применяя неравенство для двух чисел):

Следовательно, по индукционному предположению

Таким образом, индукцией по k мы доказали неравенство для всех п 9 являющихся степенью двойки.

Для доказательства неравенства для других значений п воспользуемся «индукцией вниз», то есть докажем, что если неравенство выполнено для произвольных неотрицательных п чисел, то оно справедливо также и для (п - 1)-го числа. Чтобы в этом убедиться, заметим, что по сделанному предположению для п чисел выполнено неравенство

то есть а г + а 2 + ... + а п _ х > (п — 1)А. Разделив обе части на п - 1, получим требуемое неравенство.

Итак, сначала мы установили, что неравенство имеет место для бесконечного числа возможных значений п, а затем показали, что если неравенство выполнено для п чисел, то оно справедливо и для (п - 1) числа. Отсюда теперь мы и заключаем, что неравенство Коти имеет место для набора из п любых неотрицательных чисел при любом п = 2, 3, 4, ...

Задача 14. (Д. Успенский.) Для любого треугольника АВС, у которого углы = САB, = СВА соизмеримы, имеют место неравенства

Решение. Углы и соизмеримы, а это (по определению) означает, что эти углы имеют общую меру, для которой = р, = (р, q— натуральные взаимно простые числа).

Воспользуемся методом математической индукции и проведем ее по сумме п = р + q натуральных взаимно простых чисел..

База индукции. При р + q = 2 имеем: р = 1 и q = 1. Тогда треугольник АВС равнобедренный, и нужные неравенства очевидны: они следуют из неравенства треугольника

Шаг индукции. Предположим теперь, что нужные неравенства установлены для р + q = 2, 3, ..., к — 1, где к > 2. Докажем, что неравенства справедливы и для р + q = к.

Пусть АВС — данный треугольник, у которого > 2. Тогда стороны АС и ВС не могут быть равными: пусть АС > ВС. Построим теперь, как на рисунке 2, равнобедренный треугольник АВС; имеем:

АС = DС и АD=АВ + ВD, следовательно,

2АС > АВ + ВD (1)

Рассмотрим теперь треугольник ВDС, углы которого также соизмеримы:

DСВ = (q - р), ВDС = p.

Рис. 2

Для этого треугольника выполнено индуктивное предположение, и поэтому

(2)

Складывая (1) и (2), имеем:

2AC+BD>

и поэтому

Из того же треугольника ВБС по предположению индукции заключаем, что

Учитывая предыдущее неравенство, заключаем, что

Таким образом, индуктивный переход получен, и утверждение задачи следует из принципа математической индукции.

Замечание. Утверждение задачи остается в силе и в том случае, когда углы а и р не являются соизмеримыми. В основе рассмотрения в общем случае уже приходится применять другой важный математический принцип — принцип непрерывности.

Задача 15. Несколько прямых делят плоскость на части. Доказать, что можно раскрасить эти части в белый

и черный цвета так, чтобы соседние части, имеющие общий отрезок границы, были разного цвета (как на рисунке 3 при п = 4).

рис 3

Решение. Воспользуемся индукцией по числу прямых. Итак, пусть п — число прямых, делящих нашу плоскость на части, п > 1.

База индукции. Если прямая одна (п = 1), то она делит плоскость на две полуплоскости, одну из которых можно раскрасить в белый цвет, а вторую в черный, и утверждение задачи верно.

Шаг индукции. Чтобы доказательство индуктивного перехода было более понятно, рассмотрим процесс добавления одной новой прямой. Если проведем вторую прямую (п = 2), то получим четыре части, которые можно раскрасить нужным образом, покрасив противоположные углы в один цвет. Посмотрим, что произойдет, если мы проведем третью прямую. Она поделит некоторые «старые» части, при этом появятся новые участки границы, по обе стороны которых цвет один и тот же (рис. 4).

Рис. 4

Поступим следующим образом: с одной стороны от новой прямой поменяем цвета — белый сделаем черным и наоборот; при этом те части, которые лежат по другую сторону от этой прямой, не перекрашиваем (рис. 5). Тогда эта новая раскраска будет удовлетворять нужным требованиям: с одной стороны прямой она уже была чередующейся (но с другими цветами), а с другой стороны она и была нужной. Для того чтобы части, имеющие общую границу, принадлежащую проведенной прямой, были окрашены в разные цвета, мы и перекрашивали части только с одной стороны от этой проведенной прямой.

Рис.5

Докажем теперь индуктивный переход. Предположим, что для некоторого п = к утверждение задачи справедливо, то есть все части плоскости, на которые она делится этими к прямыми, можно раскрасить в белый и черный цвета так, чтобы соседние части были разного цвета. Докажем, что тогда существует такая раскраска и для п = к + 1 прямых. Поступим аналогично случаю перехода от двух прямых к трем. Проведем на плоскости к прямых. Тогда, по предположению индукции, полученную «карту» можно раскрасить нужным образом. Проведем теперь + 1)-ю прямую и с одной стороны от нее поменяем цвета на противоположные. Таким образом, теперь + 1)-я прямая всюду разделяет участки разного цвета, при этом «старые» части, как мы уже видели, остаются правильно раскрашенными. Согласно принципу математической индукции, задача решена.

Задача 16. На краю пустыни имеются большой запас бензина и машина, которая при полной заправке может проехать 50 километров. В неограниченном количестве имеются канистры, в которые можно сливать бензин из бензобака машины и оставлять на хранение в любой точке пустыни. Доказать, что машина может проехать любое целочисленное расстояние, большее 50 километров. Канистры с бензином возить не разрешается, пустые можно возить в любом количестве.

Решение. Попытаемся доказать индукцией по п, что машина может отъехать на п километров от края пустыни. При п = 50 это известно. Осталось провести шаг индукции и объяснить, как проехать п = к + 1 километров, если известно, что п = к километров проехать можно.

Однако тут мы встречаемся с трудностью: после того как мы проехали к километров, бензина может не хватить даже на обратную дорогу (не говоря уже о хранении). И в данном случае выход состоит в усилении доказываемого утверждения (парадокс изобретателя). Будем доказывать, что можно не только проехать п километров, но и сделать сколь угодно большой запас бензина в точке на расстоянии п километров от края пустыни, оказавшись в этой точке после окончания перевозок.

База индукции. Пусть единица бензина — это количество бензина, необходимое для совершения одного километра пути. Тогда рейс на расстояние в 1 километр и обратно требует двух единиц бензина, поэтому мы можем оставить 48 единиц бензина в хранилище на расстоянии километра от края и вернуться за новой порцией. Таким образом, за несколько рейсов в хранилище можно сделать запас произвольного размера, который нам потребуется. При этом, чтобы создать 48 единиц запаса, мы расходуем 50 единиц бензина.

Шаг индукции. Предположим, что на расстоянии п = к от края пустыни можно запасти любое количество бензина. Докажем, что тогда можно создать хранилище на расстоянии п = к + 1 километров с любым заданным наперед запасом бензина и оказаться у этого хранилища в конце перевозок. Поскольку в точке п = к имеется неограниченный запас бензина, то (согласно базе индукции) мы можем за несколько рейсов в точку п = к + 1 сделать в точке п = к 4- 1 запас произвольного размера, который потребуется.

Истинность более общего утверждения, чем в условии задачи, теперь следует из принципа математической индукции.

Заключение

В частности, изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу.

В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

Литература

1.Вuленкин ИНДУКЦИЯ. Комбинаторика. Пособие ДЛЯ учителей. М., Просвещение,

1976.-48 с.

2.Головина Л.И., Яглом И.М. Индукция в геометрии. - М.: Госуд. издат. литер. - 1956 - С.I00. Пособие по математике для поступающих в вузы/ Под ред. Яковлева Г.Н. Наука. -1981. - С.47-51.

3.Головина Л.И., Яглом ИМ. Индукция в геометрии. —
М.: Наука, 1961. — (Популярные лекции по математике.)

4. И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. Учебное пособие / “Просвещение” 1975.

5.Р. Курант, Г Роббинс «Что такое математика?» Глава 1, § 2

6.Попа Д. Математика и правдоподобные рассуждения. — М,: Наука, 1975.

7.Попа Д. Математическое открытие. — М.: Наука,1976.

8.Рубанов И.С. Как обучать методу математической индукции/ Математика школе. - Nl. - 1996. - С.14-20.

9.Соминский И.С., Головина Л.И., Яглом ИМ. О методе математической индукции. — М.: Наука, 1977. — (Популярные лекции по математике.)

10.Соломинский И.С. Метод математической индукции. - М.: Наука.

63с.

11.Соломинский И.С., Головина Л.И., Яглом И.М. О математической индукции. - М.:Наука. - 1967. - С.7-59.

12.httр://ш.wikiреdiа.оrg/wiki

13.htt12:/ /www.rеfешtсоllесtiоп.ru/40 124.html

Метод доказательства, основанный на аксиоме Пеано 4, используют для доказательства многих математических свойств и различных утверждений. Основой для этого служит следующая теорема.


Теорема . Если утверждение А(n) с натуральной переменной n истинно для n = 1 и из того, что оно истинно для n = k , следует, что оно истинно и для следующего числа n=k, то утверждение А(n) n .


Доказательство . Обозначим через М множество тех и только тех натуральных чисел, для которых утверждение А(n) истинно. Тогда из условия теоремы имеем: 1) 1М ; 2) k M k M . Отсюда, на основании аксиомы 4, заключаем, что М = N , т.е. утверждение А(n) истинно для любого натурального n .


Метод доказательства, основанный на этой теореме, называется методом математической индукции, а аксиома - аксиомой индукции. Такое доказательство состоит из двух частей:


1) доказывают, что утверждение А(n) истинно для n = А(1);


2) предполагают, что утверждение А(n) истинно для n = k , и, исходя из этого предположения, доказывают, что утверждение A(n) истинно и для n = k + 1, т.е. что истинно высказывание A(k) A(k + 1).


Если А(1) А(k) A(k + 1) - истинное высказывание, то делают вывод о том, что утверждение A(n) истинно для любого натурального числа n .


Доказательство методом математической индукции можно начинать не только с подтверждения истинности утверждения для n = 1, но и с любого натурального числа m . В этом случае утверждение А(n) будет доказано для всех натуральных чисел nm .


Задача.Докажем, что для любого натурального числа истинно равенство 1 + 3 + 5 … + (2n - 1) = n.


Решение. Равенство 1 + 3 + 5 … + (2n - 1) = n представляет собой формулу, по которой можно находить сумму первых последовательных нечетных натуральных чисел. Например, 1 + 3 + 5 + 7 = 4= 16 (сумма содержит 4 слагаемых), 1 + 3 + 5 + 7 + 9 + 11 = 6= 36 (сумма содержит 6 слагаемых); если эта сумма содержит 20 слагаемых указанного вида, то она равна 20= 400 и т.д. Доказав истинность данного равенства, получим возможность находить по формуле сумму любого числа слагаемых указанного вида.


1) Убедимся в истинности данного равенства для n = 1. При n = 1 левая часть равенства состоит из одного члена, равного 1, правая часть равна 1= 1. Так как 1 = 1, то для n = 1 данное равенство истинно.


2) Предположим, что данное равенство истинно для n = k , т.е. что 1 + 3 + 5 + … + (2k - 1) = k. Исходя из этого предположения, докажем, что оно истинно и для n = k + 1, т.е. 1 + 3 + 5 + … + (2k - 1) + (2(k + 1) - 1) = (k + 1).


Рассмотрим левую часть последнего равенства.


По предположению, сумма первых k слагаемых равна k и потому 1 + 3 + 5 + … + (2k - 1) + (2(k + 1) - 1) = 1 + 3 + 5 + … + (2k - 1) + (2k + 1)=



= k+ (2k + 1) = k+ 2k + 1. Выражение k+ 2k + 1 тождественно равно выражению (k + 1).


Следовательно, истинность данного равенства для n = k + 1 доказана.


Таким образом, данное равенство истинно для n = 1 и из истинности его для n = k следует истинность для n = k + 1.


Тем самым доказано, что данное равенство истинно для любого натурального числа.


С помощью метода математической индукции можно доказывать истинность не только равенств, но и неравенств.


Задача. Доказать, что , где nN.


Решение. Проверим истинность неравенства при n = 1. Имеем - истинное неравенство.


Предположим, что неравенство верно при n = k, т.е. - истинное неравенство. Докажем, исходя из предположения, что оно верно и при n = k + 1,т.е. (*).


Преобразуем левую часть неравенства (*), учитывая, что : .


Но , значит и .


Итак, данное неравенство истинно для n = 1, и, из того, что неравенство верно для некоторого n = k , мы получили, что оно верно и для n = k + 1.


Тем самым, используя аксиому 4, мы доказали, что данное неравенство истинно для любого натурального числа.


Методом математической индукции можно доказать и иные утверждения.


Задача. Доказать, что для любого натурального числа истинно утверждение .


Решение . Проверим истинность утверждения при n = 1: -истинное высказывание.


Предположим, что данное утверждение верно при n = k : . Покажем, используя это, истинность утверждения при n = k + 1: .


Преобразуем выражение: . Найдем разность k и k+ 1 членов. Если окажется, что полученная разность кратна 7, а по предположению вычитаемое делится на 7, то и уменьшаемое также кратно 7:



Произведение кратно 7, следовательно, и .


Таким образом, данное утверждение истинно для n = 1 и из истинности его для n = k следует истинность для n = k + 1.


Тем самым доказано, что данное утверждение истинно для любого натурального числа.


Задача. Доказать, что для любого натурального числа n 2 истинно утверждение (7- 1)24.


Решение. 1) Проверим истинность утверждения при n = 2: - истинное высказывание.