Средние линии черырехугольников. Параллелограмм

Многоугольник - часть плоскости, ограниченная замкнутой ломаной линией. Углы у многоугольника обозначаются точками вершин ломаной. Вершины углов многоугольника и вершины многоугольника - это совпадающие точки.

Определение. Параллелограмм - это четырехугольник, у которого противолежащие стороны параллельны.

Свойства параллелограмма

1. Противолежащие стороны равны.
На рис. 11 AB = CD ; BC = AD .

2. Противолежащие углы равны (два острых и два тупых угла).
На рис. 11 ∠A = ∠C ; ∠B = ∠D .

3 Диагонали (отрезки прямой, соединяющие две противолежащие вершины) пересекаются и точкой пересечения делятся пополам.

На рис. 11 отрезки AO = OC ; BO = OD .

Определение. Трапеция - это четырехугольник, у которого две противолежащие стороны параллельны, а две другие - нет.

Параллельные стороны называются ее основаниями , а две другие стороны - боковыми сторонами .

Виды трапеций

1. Трапеция , у которой боковые стороны не равны,
называется разносторонней (рис. 12).

2. Трапеция, у которой боковые стороны равны, называется равнобокой (рис. 13).

3. Трапеция, у которой одна боковая сторона составляет прямой угол с основаниями, называется прямоугольной (рис. 14).

Отрезок, соединяющий середины боковых сторон трапеции (рис. 15), называется средней линией трапеции (MN ). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Трапецию можно назвать усеченным треугольником (рис. 17), поэтому и названия трапеций сходны с названиями треугольников (треугольники бывают разносторонние, равнобедренные, прямоугольные).

Площадь параллелограмма и трапеции

Правило. Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Средняя линия треугольника

Свойства

  • средняя линия треугольника параллельна третьей стороне и равна её половине.
  • при проведении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
  • средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти площади исходного треугольника.

Средняя линия четырехугольника

Средняя линия четырехугольника - отрезок, соединяющий середины противолежащих сторон четырехугольника.

Свойства

Первая линия соединяет 2 противоположные стороны. Вторая соединяет 2 другие противоположные стороны. Третья соединяет центры двух диагоналей (не во всех четырехугольниках центры пересекаются)

  • Если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.
  • Длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника - вершины параллелограмма . Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона ;
  • Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Свойства

  • средняя линия параллельна основаниям и равна их полусумме.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Средняя линия" в других словарях:

    СРЕДНЯЯ ЛИНИЯ - (1) трапеции отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям и равна их полусумме; (2) треугольника отрезок, соединяющий середины двух сторон этого треугольника: третья сторона при этом… … Большая политехническая энциклопедия

    Треугольника (трапеции) отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Большой Энциклопедический словарь

    средняя линия - 24 средняя линия: Воображаемая линия, проходящая через профиль резьбы так, что толщина выступа равна ширине канавки. Источник … Словарь-справочник терминов нормативно-технической документации

    Треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции). * * * СРЕДНЯЯ ЛИНИЯ СРЕДНЯЯ ЛИНИЯ треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Энциклопедический словарь

    средняя линия - vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis 3 mm linija, dalijanti teniso stalo paviršių išilgai pusiau. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas

    средняя линия - vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis Linija, dalijanti fechtavimosi kovos takelį į dvi lygias dalis. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas

    средняя линия - vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis Linija, dalijanti sporto aikšt(el)ę pusiau. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas

    1) С. л. треугольника, отрезок, соединяющий середины двух сторон треугольника (третью сторону называют основанием). С. л. треугольника параллельна основанию и равна его половине; площади частей треугольника, на которые делит его с. л.,… … Большая советская энциклопедия

    Треугольника отрезок, соединяющий середины двух сторон треугольника. Третья сторона треугольника при этом наз. основанием треугольника. С. л. треугольника параллельна основанию и равна половине его длины. Во всяком треугольнике С. л. отсекает от… … Математическая энциклопедия

    Треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Естествознание. Энциклопедический словарь

Средние линии геометрических фигур

научная работа

1. Свойства средних линий

1. Свойства треугольника:

· при проведении всех трёх средних линий образуются 4 равных треугольника, подобных исходному с коэффициентом 1/2.

· средняя линия параллельна основанию треугольника и равна его половине;

· средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти его площади.

2. Свойства четырёхугольника:

· если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.

· длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.

· середины сторон произвольного четырёхугольника -- вершины параллелограмма. Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;

· Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.

3. Свойства трапеции:

· средняя линия параллельна основаниям трапеции и равна их полусумме;

· середины сторон равнобедренной трапеции являются вершинами ромба.

Биномиальные коэффициенты

Числа Cnk обладают рядом замечательных свойств. Эти свойства в конечном счёте выражают различные соотношения между подмножествами данного множества X. Их можно доказывать непосредственно, исходя из формулы (1)...

Биномиальные коэффициенты

1. Сумма коэффициентов разложения (a + b)n равна 2n. Для доказательства достаточно положить a = b = 1. Тогда в правой части разложения бинома мы будем иметь сумму биномиальных коэффициентов, а слева: (1 + 1)n = 2n. 2.Коэффициенты членов...

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств...

Мультипликативные полугруппы неотрицательных действительных чисел

Пусть S - коммутативная мультипликативная несократимая полугруппа с 1 и без делителей единицы. Такие полугруппы называются целыми, или коническими. Элементы и из S называются взаимно простыми, если НОД(,)=1...

Так как предметом нашего изучения будет средняя величина, скажем вначале о том, как средние определяются в литературе. Сильное определение, включающее несколько условий, состоит в следующем . Определение...

Обобщение классических средних величин

Теперь мы готовы для квази-средних указать упомянутое выше аксиоматическое определение. Будем исходить от частных случаев - простейших средних...

Основные понятия математической статистики

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем - среднюю всего ряда. Средние...

Простейшие способы обработки опытных данных

Применение вышеназванных способов для описания реальных процессов. При этом нельзя сделать однозначный вывод о том, какой способ наиболее точно описывает тот или иной процесс. Например...

Распределение Пуассона. Аксиомы простейшего потока событий

Теперь рассмотрим случай, когда обе совокупности подчиняются нормальному распределению, но проверка гипотез о равенстве двух генеральных дисперсий закончилась отвержением гипотезы равенства...

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

Во многих случаях практики интерес представляет вопрос о том, в какой мере существенно влияние того или иного фактора на рассматриваемый признак. В данном случае фактором является вид инфекции вызвавший реактивный артрит, а признаками СОЭ, СРБ...

Случайные вектора

Ковариация случайных величин и определяется через их совместную плотность вероятности соотношением: . (57.1) Подынтегральная функция в (57.1) неотрицательна для таких, при которых, то есть при, или, . И наоборот, при, или...

Статистические расчеты содержания влаги

Численное интегрирование разными методами

Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой точке отрезка. Наиболее часто используются значения функции в середине отрезка и на его концах...

Численные методы

1 Чтобы уменьшить погрешность методов левых и правых прямоугольников был предложен метод средних, т.е. метод в котором высота прямоугольника вычисляется в середине отрезка h (Рис. 7). Обращаясь к рисунку легко увидеть...

107. Мы знаем (п. 102), что геометрическим местом точек, равноотстоящих от двух данных параллельных прямых, служит средняя параллельная. Если таким образом AB и CD (чер. 114) суть две параллельные и MN для них средняя параллельная, то расстояния любой точки E этой средней параллельной от AB и CD равны между собою, т. е., построив EF ⊥ AB и EG ⊥ CD, получим, что EF = EG.

Ясно, что построенные перпендикуляры EF и EG составляют продолжение друг друга и образуют один отрезок FG, перпендикулярный к нашим параллельным AB и CD, причем этот отрезок делится среднею параллельною (в точке E) пополам. Итак, всякий отрезок, перпендикулярный к двум параллельным и заключенный между ними, делится среднею параллельною пополам .

Возникает теперь вопрос: не будет ли также делиться пополам среднею параллельною какой-нибудь отрезок KL, не перпендикулярный к AB и CD. Пусть KL пересекается с MN в точке O. Построим через точку O перпендикулярный к прямым AB и CD отрезок HI. Тогда OH = OI. Так как, кроме того, ∠HOK = ∠IOL, как вертикальные, то прямоугольные треугольники OHK и OIL равны, откуда следует, что OK = OL. Итак, оказывается, что и любой отрезок, заключенный между двумя параллельными, делится среднею параллельною пополам.

Пусть AB || CD (чер. 115). Построив между ними ряд каких-либо отрезков EF, GH, KI и т. д., мы, согласно предыдущему, найдем, что середины этих отрезков лежат на средней параллельной MN. В общем итоге мы приходим к следующему заключению:

Геометрическим местом середин всевозможных отрезков, заключенных между двумя параллельными, служит средняя параллельная.

Отсюда возникают возможности различных построений средней параллельной для двух данных параллельных прямых: 1) мы можем, построим любой отрезок EF, заключенный между двумя данными параллельными AB и CD, разделить его пополам и через его середину построить прямую MN || AB || CD - это прямая MN и должна служить среднею параллельною, и она должна делить пополам всевозможные отрезки (напр., GH, KI и т. д.), заключенные между AB и CD. 2) Мы можем построить два отрезка, напр., EH и KI, заключенные между AB и CD, разделить каждый из них пополам и через их середины построить прямую MN - она и должна служить среднею параллельною.

108. Применим свойства средней параллельной к знакомым нам фигурам и прежде всего треугольнику.

Пусть имеем ∆ABC (чер. 116). Здесь непосредственно мы не имеем двух параллельных, но мы всегда можем их получить, напр., построив через вершину A прямую EF || BC (эту прямую EF можно было бы и не рисовать на чертеже, так как она существенной роли не играет в дальнейшем и так как достаточно лишь знать, что она существует). Тогда мы имеем две параллельных BC и EF и два отрезка AB и AC, заключенных между ними. Разделив их пополам в точках M и N (AM = MB и AN = NC) и построив через M и N прямую MN, мы получим среднюю параллельную MN, т. е. MN || BC (и || EF, но это для нас не существенно). Из этого заключаем:

прямая, соединяющая середины двух сторон треугольника, параллельна его третьей стороне.

Отрезок, соединяющий середины двух сторон треугольника, называют среднею линиею треугольника . Итак, у нас отрезок MN есть средняя лини нашего треугольника.

Пусть имеем ∆ABC (чер. 117). Разделим пополам каждую из его сторон: пусть M есть середина AB (сл. AM = MB), N - середина AC (AN = NC) и P - середина BC (BP = PC); соединим точки M, N и P отрезками MN, MP и PN, - каждый из этих отрезков является среднею линиею для нашего треугольника. Таким образом в треугольнике имеется три средних линии.

Согласно предыдущему, будем иметь: MN || BC, MP || AC и NP || AB. Поэтому AMPN, BMNP и PMNC суть параллелограммы. Так как в параллелограмме противоположные стороны равны, то имеем: MN = BP (из параллелограмма BMNP), но BP = BC/2 (ибо точка P есть середина BC); поэтому MN = BC/2. Также из параллелограмма AMPN получим: MP = AN = AC/2 и из параллелограмма AMPN - PN = AM = AB/2. Отсюда заключаем:

каждая средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей и равна ее половине.

109. Перейдем теперь к четырехугольникам и остановимся сначала на таких четырехугольниках, у которых две стороны параллельны. Принято называть такие четырехугольники трапециями . На чер. 118 изображены два различных вида трапеций: 1) трапеция ABCD, где BC || AD, но AB не параллельна CD, - эта трапеция имеет площадь (см. п. 79) и 2) трапеция A"B"C"D", где A"D" || B"C", - эта трапеция не имеет площади (п. 79).

Рассмотрим сначала трапецию ABCD (чер. 118 bis), имеющую площадь. Здесь BD || AD. Поэтому мы имеем две параллельных BC и AD и между ними отрезки AB и CD. Разделив эти отрезки пополам в точках M и N (AM = MB и CN = ND) и соединив их прямою MN, получим среднюю параллельную MN для BC и AD, т. е. MN || BC || AD. Отрезок MN этой прямой называется средней линиею трапеции (следует добавить: «соединяющей середины непараллельных сторон», потому что в трапеции, как и во всяком четырехугольнике, можно рассматривать 6 средних линий, что имеет место в п. 110). Итак, мы получили, что MN || BC || AD. Далее, построив диагональ AC, получим еще третий отрезок AC, заключенный между параллельными BC и AD - его середина должна лежать (п. 107) на средней параллельной, т. е. точка P, где пересекаются MN и AC, есть середина отрезка AC. Поэтому MP есть средняя линия треугольника ABC и PN - средняя линия ∆ACD. На основании предыдущего, имеем: MP = BC/2 и PN = AD/2. Отсюда получаем: MN = MP + PN = BC/2 + AD/2 или MN = (BC + AD)/2. Итак,

средняя линия, соединяющая середины непараллельных сторон трапеции, имеющей площадь, параллельна ее параллельным сторонам и равна их полусумме .

Пусть теперь имеем трапецию ABCD (чер. 118 bis), неимеющую площади. Здесь также BC || AD и поэтому середины M и N сторон AB и CD лежат на средней параллельной, т. е. здесь также имеем: MN || BC || AD. Построив диагональ AC, получим отрезок AC, заключенный между параллельными BC и AD, и его середина, точка P, должна лежать на средней параллельной. Поэтому PM есть средняя линия треугольника ABC и, следовательно PM = BC/2; также PN есть средняя линия ∆ABC и, след., PN = AD/2. Так как MN = PN – PM, то получим MN = PN – PM = AD/2 – BC/2 или MN = (AD – BC) / 2. Итак,

средняя линия, соединяющая середины непараллельных сторон трапеции, неимеющей площади, параллельна ее параллельным сторонам и равна их полуразности.

110. Пусть имеем какой-либо четырехугольник ABCD (имеющий площадь) - (чер. 119). Найдем середины M, N, P и Q его сторон и соединим их попарно. Получим 6 средних линий четырехугольника.

Вот свойства этих средних линий.

1) Средние линии, соединяющие середины последовательных сторон четырехугольника, образуют параллелограмм.

Для выяснения этого свойства построим диагональ AC. Тогда из ∆ABC имеем (п. 108) MN || AC и из ∆ACD на том же основании: PQ || AC, - следов., MN || PQ. Построив другую диагональ BD, найдем при ее помощи, что NP || MQ, следовательно, MNPQ есть параллелограмм.

2) Средние линии четырехугольника, соединяющие середины противоположных сторон, взаимно делятся пополам .

Это свойство теперь очевидно, так как MP и NQ являются диагоналями параллелограмма.
Через точку O пересечения прямых MP и NQ проходят также прямые, соединяющие середины диагоналей AC и BD (на чертеже диагональ BD не дана). Это следует из того, что AC И BD являются сторонами четырехугольника ACBD, не имеющего площади, к которому применимо все, изложенное в начале этого п.

111. Мы умели (пп. 57, 59) делить отрезок пополам и, следов., на 4, на 8 и вообще на 2n равных частей. Теперь мы можем разделить данный отрезок на 3, на 5 и вообще на сколько угодно равных частей.

Пусть, напр., требуется отрезок AB (чер. 120) разделить на 5 равных частей. Построим через точку A произвольную прямую AC (образующую с AB угол, отличный от выпрямленного) и отложим на AC пять произвольных, но равных между собою, отрезков AE = EF = FG = GH = HO. Построим прямую OB и через точки E, F, G и Н построим прямые EE", FF", GG", HH", параллельные OB.

Рассмотрим ∆AFF", так как AE = EF, то E есть середина стороны AF и EE" (она || FF") есть средняя линия этого треугольника, следовательно, AE" = E"F".

Рассмотрим затем трапецию EE"G"G. Так как EF = FG, FF" || EE", то FF" есть средняя линия трапеции EE"GG", - следовательно, E"F" = F"G". Также найдем, что GG" есть средняя линия трапеции FF"H"H и, следов., F"G" = G"H" и т. д. Соединяя полученные равенства, найдем AE" = E"F" = F"G" = G"H" = H"B", т. е. отрезок AB разделился на 5 равных частей.

Из решения этой задачи можно вывести заключение:

Если на одной стороне угла отложить равные отрезки и чрез их концы построить ряд параллельных прямых, то и на другой стороне угла получим равные между собой отрезки.

Добавление . Мы откладывали равные отрезки на одной прямой подряд, начиная от точки пересечения двух прямых (AB и AC чертежа 120), но возможно к такому же результату прийти и при ином способе отложения равных отрезков. На чертеже 120 bis дано два варианта такого построения: на прямой AD (см. чер. 120 bis слева или справа) отложим два равных отрезка AB и CD и через их концы построим параллельные AA" || BB" || CC" || DD". Затем возьмем точку O, середину отрезка BC, и построим OO" || BB" || CC" || AA" || DD". Тогда OO" есть средняя линия трапеции BCC"B"; поэтому B"O" = O"C (п. 109). Так как AB = CD и BO = OC, то AO также = OD; поэтому OO" есть также средняя линия трапеции ADD"A" (на чертеже справа эта трапеция ADD"A" - не имеющая площади, см. п. 109) - и также A"O" = O"D". Отсюда имеем A"O" – B"O" = O"D" – O"C" (ибо и уменьшаемые и вычитаемые обеих разностей равны), или A"B" = C"D". Возможны и иные комбинации (напр., отр. CD правой фигуры отодвинуть так, чтобы точка C оказалась правее точки пересечения прямых AD и A"D"). Общее заключение таково: если построены две прямые, на одной из них отложены как-либо два равных отрезка и через концы их построены параллельные, то эти последние выделят и на другой прямой два равных между собою отрезка.

112. Упражнения .

  1. Через вершины данного треугольника построены прямые, параллельные его сторонам. Показать, что новый треугольник имеет стороны вдвое больше, чем стороны данного, и что вершины данного являются серединами сторон нового (сравн. упр. 7 из п. 54).
  2. Построить треугольник, если даны середины трех его сторон.
  3. Построить параллелограмм, если даны середины трех его сторон.
  4. Известно (п. 110), что середины четырех сторон четырехугольника являются вершинами параллелограмма. Когда этот параллелограмм обращается в ромб, когда в прямоугольник, когда в квадрат?
  5. Прямая, соединяющая вершину треугольника со срединою противоположной стороны (медиана) и прямая, соединяющая середины двух других сторон треугольника, взаимно делятся пополам.
  6. Продолжим одну сторону треугольника на отрезок, равный этой стороне, и соединим конец отрезка со срединою другой стороны. Последняя соединяющая прямая отсекает от третьей стороны треугольника отрезок, равный 1/3 этой стороны. (Построить еще прямую, параллельную последней соединяющей прямой чрез вершину треугольника, противолежащую той его стороне, которая была продолжена).
  7. Если на стороне AB параллелограмма ABCD отложить отрезок AM = (1/n)AB (напр., (1/7)AB) и соединить D с M, то DM пересечет диагональ AC в точке N так, что AN = (1/(n+1))AC (во взятом примере (1/8)AC).
    Для выяснения этого надо на продолжении стороны AB отложить BM" = AM и соединить C с M"; тогда C"M" || DM, – приметь п. 111.

Четырёхугольник, у которого только две стороны параллельны называются трапецией .

Параллельные стороны трапеции называются её основаниями , а те стороны, которые не параллельны, называются боковыми сторонами . Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия - это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Теорема:

Если прямая, пересекающая середину одной боковой стороны, параллельна основаниям трапеции, то она делит пополам вторую боковую сторону трапеции.

Теорема:

Длина средней линии равна среднему арифметическому длин её оснований

MN || AB || DC
AM = MD; BN = NC

MN средняя линия, AB и CD - основания, AD и BC - боковые стороны

MN = (AB + DC)/2

Теорема:

Длина средней линии трапеции равна среднему арифметическому длин её оснований.

Основная задача : Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема : Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA 1 = A 1 A 2 = A 2 A 3 = A 3 A 4 = A 4 A 5
Мы соединяем A 5 с B и проводим такие прямые через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B. Они пересекают AB соответственно в точках B 4 , B 3 , B 2 и B 1 . Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB 3 A 3 A 5 мы видим, что BB 4 = B 4 B 3 . Таким же образом, из трапеции B 4 B 2 A 2 A 4 получаем B 4 B 3 = B 3 B 2

В то время как из трапеции B 3 B 1 A 1 A 3 , B 3 B 2 = B 2 B 1 .
Тогда из B 2 AA 2 следует, что B 2 B 1 = B 1 A. В заключении получаем:
AB 1 = B 1 B 2 = B 2 B 3 = B 3 B 4 = B 4 B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.