Как называется график функции y x2. Построение графика квадратичной функции. Визуальный гид (2019)

Урок на тему: "График и свойства функции $y=x^2$. Примеры построения графиков"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Интерактивный тренажер "Правила и упражнения по алгебре"
Электронная рабочая тетрадь по алгебре для 7 класса, онлайн версия

Функция – это зависимость одной переменной от другой.

График функции – графическое изображение функции.

Свойства функции

  • Область определения функции – все значения, которые может принимать независимая переменная.
  • Область значений функции – все значения, которые может принимать зависимая переменная.
  • Нули функции – значение независимой переменной, при которой зависимая переменная равна 0.
  • Минимальное значение функции – минимальное значение зависимой переменной.
  • Максимальное значение функции – максимальное значение зависимой переменной.

Свойства функции $y=x^2$

Давайте опишем свойства данной функции:

1. x – независимая переменная, y – зависимая переменная.

2. Область определения: очевидно, что для любого значения аргумента (x) существует значение функции (y). Соответственно область определения данной функции вся числовая прямая.

3. Область значений: y не может быть меньше 0, так как квадрат любого числа есть число положительное.

4. Если x=0, то и y=0.

5. Обратите внимание, что для противоположных значений аргумента функция принимает одинаковое значение. Для пары чисел x = 1 и x = -1 значение функции будет 1, т.е. y = 1. Для пары чисел x = 2 и x = – 2; y = 4 и т.д.
$y = x^2 =(-x)^2$.

График функции $y=x^2$

Внимательно посмотрим на формулу y = x 2 и попытаемся описать словами примерный вид будущего графика.

1. Так как y ≥ 0, то весь график не может располагаться ниже оси OX.

2. График симметричен относительно оси OY. Нам достаточно построить график для положительных значений x, а затем зеркально отразить его для отрицательных значений x.

Найдем несколько значений y:


Построим эти точки (см. рис. 1).

Если мы попробуем соединить их пунктирной линией, как показано на рис. 1 , то некоторые значения функции не попадут на эти линии, например, точки A (x = 0,5; y = 0,25) и B (x=2,5; y=6,25). Даже если мы построим очень много точек и соединим их маленькими прямыми отрезками, всегда найдутся значения y, не попадающие на эти отрезки. Поэтому точки надо соединять плавной кривой линией (см. рис. 2).




Теперь осталось зеркально отразить график для отрицательных значений x (см. рис. 3). Такая кривая называется параболой. Точка О (0;0) называется вершиной параболы. Симметричные кривые называются ветвями параболы.


Примеры

I. Дизайнеру надо покрасить часть стены дома в форме квадрата со сторонами 2,7 метра. Специальная краска для стен продается в фасовке из расчета одна банка на 1 м 2 . Не проводя вычисления, выясни, сколько банок краски надо купить, что бы после окрашивания не осталось лишних не распечатанных банок.

Решение:
1. Построим параболу.
2. Найдем на параболе точку А, у которой координата x=2,7 (см. рис. 4).
3. Мы видим, что в этой точке значение функции больше 7, но меньше 8. Значит, дизайнеру потребуется минимум 8 банок краски.


II. Построить график функции у= (х + 1) 2 .

Найдем несколько значений y.


Построим эти точки и прямую x= -1, параллельную оси OY. Очевидно, что построенные точки симметричны относительно этой прямой. В результате у нас получится такая же парабола, только смещенная влево по оси OX (см. рис.5).

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Вида у = kx + m с двумя переменными х, у. Правда, переменные х, у, фигурирующие в этом уравнении (в этой математической модели) считались неравноправными: х - независимая переменная (аргумент), которой мы могли придавать любые значения, независимо ни от чего; у - зависимая переменная, поскольку ее значение зависело от того, какое значение переменной х было выбрано. Но тогда возникает естественный вопрос: а не встречаются ли математические модели такого же плана, но такие, у которых у выражается через х не по формуле у = kx + m, а каким-то иным способом? Ответ ясен: конечно, встречаются. Если, например, х - сторона квадрата, а у - его
площадь, то у - х 2 . Если х - сторона куба, а у - его объем, то у - х 3 . Если х - одна сторона прямоугольника, площадь которого равна 100 см 2 , а у - другая его сторона, то . Поэтому, естественно, что в математике не ограничиваются изучением модели y-kx + m, приходится изучать и модель у = х 2 , и модель у = х 3 , и модель , и многие другие модели, имеющие такую же структуру: в левой части равенства находится переменная у, а в правой - какое-то выражение с переменной х. Для таких моделей сохраняют термин «функция», опуская прилагательное «линейная».

В этом параграфе мы рассмотрим функцию у = х 2 и построим ее график .

Дадим независимой переменной х несколько конкретных значений и вычислим соответствующие значения зависимой переменной у (по формуле у = x 2):

если х = 0, то у = О 2 = 0;
если х = 1, то у = I 2 = 1;
если х = 2, то у = 2 2 = 4;
если х = 3, то у = З 2 = 9;
если х = - 1, то у = (- I 2) - 1;
если х = - 2, то у = (- 2) 2 = 4;
если х = - 3, то у = (- З) 2 = 9;
Короче говоря, мы составили следующую таблицу:

X 0
1
2
3
-1
-2
-3
У 0
1
4
9
1
4
9

Построим найденные точки (0; 0), (1; 1), (2; 4), 93; 9), (-1; 1), (- 2; 4), (- 3; 9), на координатной плоскости хОу (рис. 54, а).

Эти точки расположены на некоторой линии, начертим ее (рис. 54, б). Эту линию называют параболой.

Конечно, в идеале надо было бы дать аргументу х все возможные значения, вычислить соответствующие значения переменной у и построить полученные точки (х; у). Тогда график был бы абсолютно точным, безупречным. Однако это нереально, ведь таких точек бесконечно много. Поэтому математики поступают так: берут конечное множество точек, строят их на координатной плоскости и смотрят, какая линия намечается этими точками. Если контуры этой линии проявляются достаточно отчетливо (как это было у нас, скажем, в примере 1 из § 28), то эту линию проводят. Возможны ли ошибки? Не без этого. Поэтому и надо все глубже и глубже изучать математику, чтобы были средства избегать ошибок.

Попробуем, глядя на рисунок 54, описать геометрические свойства параболы.

Во-первых , отмечаем, что парабола выглядит довольно красиво, поскольку обладает симметрией. В самом деле, если провести выше оси х любую прямую, параллельную оси х, то эта прямая пересечет параболу в двух точках, расположенных на равных расстояниях от оси у, но по разные стороны от нее (рис. 55). Кстати, то же можно сказать и о точках, отмеченных на рисунке 54, а:

(1; 1} и (- 1; 1); (2; 4) и (-2; 4); C; 9) и (-3; 9).

Говорят, что ось у является осью симметрии параболы у=х 2 или что парабола симметрична относительно оси у.

Во-вторых , замечаем, что ось симметрии как бы разрезает параболу на две части, которые обычно называют ветвями параболы.

В-третьих , отмечаем, что у параболы есть особая точка, в которой смыкаются обе ветви и которая лежит на оси симметрии параболы - точка (0; 0). Учитывая ее особенность, ей присвоили специальное название - вершина параболы.

В-четвертых , когда одна ветвь параболы соединяется в вершине с другой ветвью, это происходит плавно, без излома; парабола как бы «прижимается» к оси абсцисс. Обычно говорят: парабола касается оси абсцисс.

Теперь попробуем, глядя на рисунок 54, описать некоторые свойства функции у = х 2.

Во-первых , замечаем, что у - 0 при х = 0, у > 0 при х > 0 и при х < 0.

Во-вторых, отмечаем, что y наим. = 0, а у наиб не существует.

В-третьих , замечаем, что функция у = х 2 убывает на луче (-°°, 0] - при этих значениях х, двигаясь по параболе слева направо, мы «спускаемся с горки» (см. рис. 55). Функция у = х 2 возрастает на луче ;
б) на отрезке [- 3, - 1,5];
в) на отрезке [- 3, 2].

Решение,

а) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка (рис. 56). Для выделенной части графика находим у наим. = 1 (при х = 1), у наиб. = 9 (при х = 3).

б) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, -1,5] (рис. 57). Для выделенной части графика находим y наим. = 2,25 (при х = - 1,5), у наиб. = 9 (при х = - 3).

в) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, 2] (рис. 58). Для выделенной части графика находим у наим = 0 (при х = 0), у наиб. = 9 (при х = - 3).

Совет. Чтобы каждый раз не строить график функции у - х 2 по точкам, вырежьте из плотной бумаги шаблон параболы. С его помощью вы будете очень быстро чертить параболу.

Замечание. Предлагая вам заготовить шаблон параболы, мы как бы уравниваем в правах функцию у = х 2 и линейную функцию у = кх + m. Ведь графиком линейной функции является прямая, а для изображения прямой используется обычная линейка - это и есть шаблон графика функции у = кх + m. Так пусть у вас будет и шаблон графика функции у = х 2 .

Пример 2. Найти точки пересечения параболы у = х 2 и прямой у - х + 2.

Решение. Построим в одной системе координат параболу у = х 2 прямую у = х + 2 (рис. 59). Они пересекаются в точках А и В, причем по чертежу нетрудно найти координаты этих точек А и В: для точки А имеем: x = - 1, y = 1, а для точки В имеем: х - 2, у = 4.

Ответ: парабола у = х 2 и прямая у = х + 2 пересекаются в двух точках: А (-1; 1) и В(2;4).

Важное замечание. До сих пор мы с вами довольно смело делали выводы с помощью чертежа. Однако математики не слишком доверяют чертежам. Обнаружив на рисунке 59 две точки пересечения параболы и прямой и определив с помощью рисунка координаты этих точек, математик обычно проверяет себя: на самом ли деле точка (-1; 1) лежит как на прямой, так и на параболе; действительно ли точка (2; 4) лежит и на прямой, и на параболе?

Для этого нужно подставить координаты точек А и В в уравнение прямой и в уравнение параболы, а затем убедиться, что и в том, и в другом случае получится верное равенство. В примере 2 в обоих случаях получатся верные равенства. Особенно часто производят такую проверку, когда сомневаются в точности чертежа.

В заключение отметим одно любопытное свойство параболы, открытое и доказанное совместно физиками и математиками.

Если рассматривать параболу у = х 2 как экран, как отражающую поверхность, а в точке поместить источник света, то лучи, отражаясь от параболы экрана, образуют параллельный пучок света (рис. 60). Точку называют фокусом параболы. Эта идея используется в автомобилях: отражающая поверхность фары имеет параболическую форму, а лампочку помещают в фокусе - тогда свет от фары распространяется достаточно далеко.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки