Круговорот важнейших химических элементов в природе. Круговорот химических элементов в природе (на примере одного из элементов: углерода или кислорода). Роль живых существ в круговороте химических элементов

    Круговорот основных элементов биосферы – С, О, H , N , P , S , Al , Fe , P d , Cd , Hg , Sr , органических и неорганических соединений.

Углерод включается в состав органических элементов в процессе фотосинтеза из CO2. Другие процессы биосинтеза преобразуют углерод в крахмал, гликоген и другие вещества. Эти вещества формируют ткани фотосинтезирующих организмов и служат источником органических веществ для животных. В процессе дыхания организма окисляются сложные органические вещества и выходит CO2, который опять участвует в фотосинтезе. Время круговорота – 8 лет.

Миграция C02 в биосфере Земли протекает двумя путями:

1-й путь закладывается в поглощение его в процессе фотосинтеза с образованием органических веществ и последующем захоронении их в литосфере в виде торфа, угля, горных сланцы, рассеянной органики, осадочных горных пород. По 2-му пути миграция С осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане.

В количественном отношении главной составляющей живой материи является кислород , круговорот которого осложнён его способностью вступать в различные химические реакции, главным образом реакции окисления.

Кислород, содержащийся в атмосфере и в поверхностных минералах (осадочные кальциты, железные руды), имеет биогенное происхождение и должно рассматриваться как продукт фотосинтеза. Этот процесс противоположен процессу потребления кислорода при дыхании, который сопровождается разрушением органических молекул, взаимодействием кислорода с водородом и образованием воды. В основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают, что для полного обновления всего атмосферного кислорода требуется около двух тысяч лет.

Водород на Земле находится, преимущественно, в гидросфере в составе воды. Содержание его в литосфере и атмосфере сравнительно невелико. Он входит также в состав органических веществ. Огромные массы водорода, наряду с кислородом, участвуют в круговороте воды – одном из наиболее мощных циклических процессов на планете.

Особенностью водорода является его способность (наряду с гелием) уходить из поля тяготения Земли благодаря своей малой атомной массе. Эти потери компенсируются выделением водорода из мантии. Молекулярный водород поступает в атмосферу Земли в результате вулканической деятельности, его выделяют также некоторые бактерии. После появления на нашей планете живых организмов водород стал связываться в органическом веществе.

При гниении органических веществ значительная часть содержащегося в них азота превращается в NH4, который под влиянием живущих в почве трифицирующих бактерий окисляется в азотную кислоту. Она вступая в реакцию с находящимся в почве карбонатами (например с СаСО3), образует нитраты:

2HN03 + СаСО3  Са(NО3)2 + СО2 + Н20

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигание дров, каменного угля, торфа. Далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде. Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы возмещения потери азота. К таким процессам относятся прежде всего происходящие в атмосфере электрические разряды. При грозах они синтезируют из азота и кислорода оксиды азота; последние с водой дают азотную кислоту, превращаясь в почве в нитраты (аммиак). Другим источником попадания азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих ба¬терий поселяются на корнях растений из семейства бобовых, вызывая образования характерных вздутий - «клубеньков». Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. При распаде растительного и животного белка азот вновь попадает в неживую природу, откуда поступает в состав новых поколений живых организмов, а часть азота в виде молекул возвращается в атмосферу.

Фосфор – очень важный элемент для всего живого, поскольку участвует в образовании и превращении азотистых веществ и углеводов в живых тканях – биосинтезе белков, нуклеиновых кислот, играющих главную роль в хранении и передаче наследственной информации и обеспечивающих синтез белков в клетках, пептидов и т.д., входит в состав скелета, тканей мозга, хромосом, ферментов, вирусов, протоплазмы живой клетки.

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах P содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме т.н. органического фосфата. По пищевым цепям P переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащегося P соединения в процессе клеточного дыхания для получения органической энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому, же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.

Сера относится к группе циклических химических элементов, об­разует 369 минералов. Это - важный биофильный элемент, который встречается в биосфере в основном в животных тканях и не только участвует в процессах, протекающих в живых метках, или с участи­ем различных органических веществ, но и существенно влияет на ход метаболизма множества групп и большого количества организмов. Биофильностъ характеризует кларк концентрации элемента в живом ве­ществе (КК) - отношение содержания данного элемента в конкретном природном объекте к кларку литосферы. В круговороте серы велика роль микроорганизмов. Несмотря на то, что в круговороте серы протекают как окисли­тельные, так и восстановительные процессы, часть серы выводится из кругооборота, восстановление не компенсирует окисление. Это усугубляется и сознательной деятельностью человека, который пере­водит природные сульфиды в сульфаты, например при производстве серной кислоты, выплавке металлов ив сернистых руд.

Соединения серы, поступившие техногенным путем в атмосферу с суши, почти целиком возвращаются на земную поверхность и пагубно воздействуют на природные комплексы.

Алюминий - третий по массе элемент в земной коре; его больше 7,5%. Один из главных элементов массивных пород. Количество его уменьшается с глубиной в основных породах. В массивных породах он находится гл. обр. в алюмо-силикатах калия, натрия, в меньшей степени- в и еще реже- в окислах. Алюмо-силикаты массивных пород в биосфере неустойчивы, теряют металлы, поглощают воду и переходят в свободные кислоты (глины). Процесс идет под влиянием С0 2 и воды и часто связан с жизнью. Глины-каолин в некоторых почвах и морских-распадаются, давая гидраты окиси алюминия. Часть алюминия находится в водах; в водных растворах кроме иона А1 могут находиться мицелы гидратов окиси алюминия или глин (каолины); для пресных вод биосферы А1 находится в тысячных и стотысячных долях процента (для океана эта величина не определена). Из водных растворов алюминий переходит в организмы, где он концентрируется в растениях и входит в богатые водой труднорастворимые силикаты магния. Эти формы нахождения алюминия неустойчивы в глубоких частях земной коры, в области метаморфизма, куда они попадают в течение геологического времени благодаря смещениям земной коры при горообразовании. В верхних областях метаморфизма образуются новые соединения-каолиновые алюмо-силикаты-из глин.

В земной коре находятся обильные источники железа. Небольшое количество железа переносится в растворе поверхностными и подземными водами, но, вероятно, большая часть его перемещается поверхностными водами в виде твердых частиц, включая коллоиды, и органического вещества.

Считают, что железо в растворе существует преимущественно в виде ионов, однако в поверхностных водах оно часто встречается в органических соединениях. Если рН воды ниже 3,0, в ней присутствуют ионы трехвалентного железа Fe 3+ . При более высоком рН трехвалентное железо может присутствовать в виде комплексного иона. Если величина Eh не очень высока, вода содержит двухвалентное железо. Когда подземные воды, содержащие ионы двухвалентного железа, контактируют с атмосферой, может протекать следующая реакция:

Поскольку при взятии проб подземной воды она почти всегда соприкасается с воздухом и для этой реакции необходимо небольшое количество кислорода, последняя всегда происходит в большинстве проб подземной воды, отбираемой для химического анализа. Хотя в результате этой реакции рН несколько снижается, растворимость гидроокиси трехвалентного железа так низка при обычных величинах рН, что большая часть железа в растворе осаждается.

Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов. Во-первых, глобального круговорота, включающего циркуляцию паров ртути в атмосфере (от наземных источников в Мировой океан и наоборот). Во-вторых, локального круговорота, основанного на процессах метилирования неорганической ртути, поступающей из техногенных источников. Именно с круговоротом второго типа чаще всего связано формирование опасных с экологических позиций ситуаций.

Поступающие в окружающую среду из природных и техногенных источников ртуть и ее соединения подвергаются в ней различным преобразованиям. Неорганические формы ртути претерпевают преобразования в результате окислительно-восстановительных процессов. Пары ртути окисляются в воде в присутствии кислорода неорганическую двухвалентную ртуть (Hg 2+), чему в значительной мере способствуют присутствующие в водной среде органические вещества, которых особенно много в зонах загрязнения. В свою очередь, ионная ртуть, поступая или образуясь в воде, способна формировать комплексные соединения с органическим веществом. Наряду с окислением паров ртути образование Hg 2+ может происходить при разрушении ртуть органических соединений.

Неорганическая ртуть Hg 2+ претерпевает два важных вида превращений в окружающей среде. Первый - это восстановление с образованием паров ртути. Известно, что некоторые бактерии способны осуществлять это преобразование. Второй важной реакцией является ее превращение в метил- и диметилпроизводные и их последующие взаимопревращения друг в друга. Эта реакция играет ключевую роль в локальном круговороте ртути. Важно то, что метилирование ртути происходит в самых различных условиях: в присутствии и отсутствии кислорода, разными бактериями, в различных водоемах, в почвах и даже в атмосферном воздухе. Особенно интенсивно процессы метилирования протекают в верхнем слое богатых органическим веществом донных отложений водоемов, во взвешенном в воде веществе, а также в слизи, покрывающей рыбу.

Второстепенные элементы, подобно жизненно важным, нередко мигрируют между организмами и средой, хотя и не представляют какой-либо ценности для организмов. Большинство из этих элементов участвуют в общем осадочном цикле. Обычно они оказывают малое воздействие на живые существа. Однако могут быть и неожиданные последствия, связанные в основном с деятельностью человека. Например, радиоактивный стронций-90, ранее в природе не существовавший, по химическим свойствам похож на кальций, поэтому, попав в организмы, он накапливается в костях и оказывается в тесном контакте с кроветворными тканями. Радиоактивный цезий-137 по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям.

Современная промышленность обогатила биосферу ртутью, соединениями кадмия, меди, цинка, свинца. Для жизни эти вещества токсичны.

Важным свойством биосферы является наличие в ней механизмов, обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов, а также непрерывность биосферных процессов.

Круговоротами называются повторяющиеся процессы превращения и перемещения веществ в природе, имеющие более или менее выраженный циклический характер.

Круговороты веществ и элементов отражают неразрывную связь геологических и биологических процессовв биосфере. Выделяют два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот происходит в течение сотен тысяч или миллионов лет. Горные породы подвергаются разрушению и выветриванию; продукты выветривания, в том числе растворенные в воде минеральные питательные вещества, сносятся потоками воды в мировой океан. В океане эти вещества образуют морские напластовывания, а также частично возвращаются насушус атмосферными осадками и с живыми организмами. Крупные медленные геотектонические изменения, процессы опускания материков и поднятия морского дна, приводят к возвращению морских отложений на сушу, после чего процесс проходит новый цикл.

Малый круговорот является частью большого круговорота и представляет собой процесснепрерывного создания и деструкции органического вещества в экосистемах в результате взаимосвязанного функционирования живых организмов, т.е. питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и осуществление жизненных процессов как их самих, так и организмов-консументов. Продукты распада органического вещества попадают в распоряжение почвенной микрофлоры и мезофауны (бактерий, грибов, червей и т.п.) и опять разлагаются до минеральных компонентов, которые вновь становятся доступными для растений.

Круговорот воздуха

Поток солнечной энергии образует глобальные физические, круговороты воздуха и воды на Земле. Движение воздушных масс помимо механических эффектов (ветры, волны, течения) обусловливаетаэрогенную миграцию веществ, в первую очередь газов, паров воды и пылевых частиц, аэрозолей разного состава. Под действием солнечной радиации и грозовых разрядов в атмосфере происходят различные фотохимические и электрохимические реакции – фотолиз воды, образование озона, окислов и кислотных осадков, образование углеводородных смогов и др.

Круговорот воды

Глобальный круговорот воды отражен на рис. 4. Это самый значительный по переносимым массам и по затратам энергии круговорот на Земле. За год в него вовлекается всего 0,04% массы гидросферы, но это соответствует 18,3 млн м 3 воды за секунду и более 40 млрд МВт солнечной энергии.

Рис. 4

Резервуары и круговорот воды на Земле.

Объемы резервуаров (подчеркнуты) – в тыс. км 3 ;

потоки влаги (испарение, перенос в атмосфере, осадки, сток) – в тыс. км 3 /год

Речной сток составляет только 8% глобального гидрологического цикла, Круговорот воды, особенно поверхностный и подземный сток на суше, определяет гидрогенную миграцию веществ, которая помимо переноса состоит из множества процессов растворения, кристаллизации, осаждения, ионного обмена и окислительно-восстановительных реакций.

В круговороте воды заметное участие принимают живые организмы, экосистемы. Растения перехватывают часть осадков и способствуют испарению влаги до того, как она попадет на землю. Почвенная влага всасывается корнями растений, участвует в обмене веществ и затем испаряется из листьев (транспирация). Вместе с испарением с поверхности почвы транспирация составляет суммарное испарение. Уровень перехвата и транспирации различен для разных биомов, но в целом составляет более 40% объема испарения на суше.

Закономерный круговорот химических соединений отдельных элементов и осуществляется в ходе совместной деятельности различных живых организмов. Он включает введение химических элементов в состав живых клеток, химические превращения веществ в процессах метаболизма, выведение в окружающую среду и деструкцию органических веществ с последующей их минерализацией. Высвобождающиеся минеральные вещества вновь включаются в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде реализуются только на уровне биосферы в целом.

Круговорот биогенных элементов, обусловленный синтезом и распадом органических веществ в экосистеме, называют биотическим круговоротом веществ. Кроме биогенных элементов в биотический круговорот вовлечены важные для биоты минеральные элементы и множество различных соединений. Поэтому весь циклический процесс химических превращений, обусловленных биотой, особенно когда речь идет о всей биосфере, называют еще биогеохимическим круговоротом .

В каждом круговороте выделяют две части: резервный фонд и подвижный (обменный) фонд. В резервный фонд входят медленно движущиеся вещества, в основном небиологический компонент. Для обменного фонда характерен быстрый обмен между организмами и окружающей средой. Сравнительные объемы подвижных и резервных фондов имеют значение с точки зрения оценки антропогенной нагрузки на биосферу, так как изменению более подвержены малообъемные фонды.

Биогеохимические циклы разделяют на круговороты газов с резервным фондом в атмосфере и гидросфере и осадочные круговороты с резервным фондом в земной коре.

Благодаря наличию крупных атмосферных и океанических фондов в круговоротах газообразных веществ – углерода, азота, кислорода – довольно быстро компенсируются возможные нарушения. Эти круговороты «забуферены» и в этом отношении являются саморегулирующими системами. В осадочных циклах (фосфор, железо и др.) механизмы саморегуляции работают гораздо хуже и легко нарушаются, так как основная масса веществ в осадочных циклах находится в малоподвижном резервном фонде в земной коре.

В качестве примеров круговорота веществ в биосфере рассмотрим биогеохимические циклы важнейших биогенных элементов: углерода, азота, фосфора, серы.

Круговорот углерода

В основе биогенного круговорота углерода лежит неорганическое вещество – диоксид углерода. В природе СО 2 входит в состав атмосферы, а также находится в растворенном виде в гидросфере.

Включение углерода в состав органического вещества происходит в процессе фотосинтеза, в результате которого на основе углекислого газа и воды образуются сахара. В дальнейшем, другие процессы биосинтеза преобразуют их в более сложные органические вещества. Эти соединения формируют ткани фотосинтезирующих организмов и служат источником органических веществ для животных.

В процессе дыхания все организмы окисляют сложные органические вещества в конечном итоге до СО 2 , который выводится во внешнюю среду, где может вновь вовлекаться в процесс фотосинтеза. Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разрушению организмами-редуцентами, в результате чего углерод в виде Н 2 СО 3 вновь поступает в круговорот.

При определенных условиях разложение накапливаемых мертвых остатков в почве идет замедленным темпом через образование гумуса, минерализация которого под воздействием грибов и бактерий происходит с низкой скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность организмов-деструкторов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа, углерод не высвобождается и круговорот приостанавливается. Аналогичным образом в прошлые геологические эпохи происходило образование каменного угля и нефти. Сжигание ископаемого топлива в настоящее время возвращает углерод, выключенный ранее из круговорота, в атмосферу. В гидросфере приостановка круговорота углерода связана с включением СО 2 в состав СаСО 3 в виде известняков. В этом случае углерод выключается из круговорота на целые геологические эпохи до поднятия органогенных пород над уровнем моря. Тогда круговорот возобновляется через выщелачивание извесняков атмосферными осадками, а также биогенным путем под воздействием лишайников, корней растений. Схема круговорота углерода приведена на рис.5.

Рис.5.

Схема круговорота углерода

Круговорот азота

Главный источник азота органических соединений – газообразный азот N 2 в составе атмосферы. Молекулярный азот не усваивается живыми организмами. Переход его в доступные живым организмам соединения (фиксация) может происходить несколькими путями. Фиксация азота частично происходит в атмосфере, где при грозовых разрядах образуется оксид азота (II), который окисляется до оксида азота (IV), с последующим образованием азотной кислоты и нитратов, выпадающих на поверхность Земли с атмосферными осадками.

Наиболее важной формой фиксации азота является ферментативная фиксация в процессе жизнедеятельности сравнительно немногих видов организмов-азотфиксаторов. Отмирая, они обогащают среду органическим азотом, который быстро минерализуется. Наиболее эффективна фиксация азота, осуществляемая бактериями, формирующими симбиотические связи с бобовыми растениями. В результате их деятельности в наземных и подземных органах растений (например, клевера или люцерны) за год накапливается азота до 150-400 кг на 1 га. Азот связывают также свободноживущие азотфиксирующие почвенные бактерии, а в водной среде – сине-зеленые водоросли (цианобактерии). Все азотфиксаторы включают азот в состав аммиака (NH 3), и он сразу же используется для образования органических веществ, в основном для синтеза белков. Минерализация азотсодержащих органических веществ редуцентами происходит в результате процессов аммонификации и нитрификации . Аммонифицирующие бактерии в процессе биохимического разложения мертвого органического вещества переводят азот органических соединений в аммиак, который в водном растворе образует ионы аммония (NH 4 +). В результате деятельности нитрифицирующих бактерий в аэробной среде аммиак окисляется в нитриты (NO 2 -), а затем в нитраты (NO 3 -).

Большинство растений получают азот из почвы в виде нитратов. Поступающие в растительную клетку нитраты восстанавливаются до нитритов, а затем до аммиака, после чего азот включается в состав аминокислот, составляющих белки. Часть азота растениями усваивается непосредственно в виде ионов аммония из почвенного раствора.

Животные получают азот по пищевым цепям прямо или опосредованно от растений. Экскреты и мертвые организмы, составляющие основу детритных пищевых цепей, разлагаются и минерализуются организмами-редуцентами, превращающими органический азот в неорганический.

Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрофикаторов, осуществляющих в анаэробной среде процесс, обратный нитрификации, восстанавливая нитраты до свободного азота.

Значительная часть азота, попадая в океан (в основном со стоком вод с континентов), используется водными фотосинтезирующими организмами, прежде всего фитопланктоном, а затем, попадая в цепи питания животных, частично возвращаются на сушу с продуктами морского промысла или птицами. Небольшая часть азота попадает в морские осадки. Схема круговорота азота приведена на рис.6.

Рис.6.

Схема круговорота азота

Круговорот фосфора

В круговороте фосфора, в отличие от круговоротов углерода и азота, отсутствует газовая фаза. Фосфор в природе в больших количествах содержится в минералах горных пород и попадает в наземные экосистемы в процессе их разрушения. Выщелачивание фосфора осадками приводит к поступлению его в гидросферу и соответственно в водные экосистемы. Растения поглощают фосфор в виде растворимых фосфатов из водного или почвенного раствора и включают его в состав органических соединений – нуклеиновых кислот, систем переноса энергии (АДФ, АТФ), в состав клеточных мембран. Другие организмы получают фосфор по пищевым цепям. В организмах животных фосфор входит в состав костной ткани, дентина.

В процессе клеточного дыхания происходит окисление органических соединений, содержащих фосфор, при этом органические фосфаты поступают в окружающую среду в составе экскретов. Организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и, таким образом, снова вовлекаться в круговорот.

Поскольку в круговороте фосфора отсутствует газовая фаза, фосфор как и другие биогенные элементы почвы, циркулирует в экосистеме лишь в том случае, если отходы жизнедеятельности откладываются в местах поглощения данного элемента. Нарушение круговорота фосфора может происходить, например, в агроэкосистемах, когда урожай вместе с извлеченными из почвы биогенами перевозится на значительные расстояния, и они не возвращаются в почву в местах потребления.

После неоднократного потребления фосфора организмами на суше и в водной среде, в конечном итоге он выводится в донные осадки в виде нерастворимых фосфатов. После поднятия осадочных пород над уровнем моря в ходе большого круговорота вновь начинают действовать процессы выщелачивания и бигенного разрушения.

Внесение фосфорных удобрений, представляющих собой продукты переработки осадочных пород, позволяет восполнить потребленный фосфор в регионах с интенсивным сельскохозяйственным производством. Однако, смыв удобрений с полей, а также поступление в водоемы фосфатов с продуктами жизнедеятельности животных и человека может приводить к перенасыщению водных экосистем фосфатами и нарушению в них экологического равновесия.

Схема круговорота фосфора приведена на рис.7.

Рис.7.

Схема круговорота фосфора

Круговорот серы

В глобальном круговороте серы (рис. 8) кроме бактерий, грибов и растений, использующих сульфат природных вод и почвы для синтеза серосодержащих аминокислот, работают еще несколько групп специализированных бактерий, осуществляющих превращения в реакцияхH 2 SоS<=>SO 4 иH 2 S<=>SO 4 .

Потребность биоты в сере относительно невелика (биофильность S»1), а природные резервуары серы огромны. Поэтому сера редко оказывается лимитирующим биогеном. Биотический круговорот серы включен в общий, в значительной своей части абиогенный, процесс постепенного превращения восстановленных форм серы (в основном сульфидных руд), сложившихся в восстановительной обстановке древней Земли, в окисленные формы. Эта тенденция существенно усиливается техногенезом.

Круговорот веществ в природе.

1. Биохимический круговорот.

2. Круговорот в биосфере.

3. Круговорот углерода.

4. Круговорот воды.

5. Круговорот углерода

6. Круговорот кислород

7. Круговорот азот

8. Круговорот фосфор

9. Круговорот сера.

1) Биогеохимические круговороты.

В отличие от энергии, которая используется организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, это и называется биохимическими круговоротами. Из 90 с лишним элементов, которые встречаются в природе, только 40 нужны живым организмам. Наиболее важные для них и нужные в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и используется организмами при дыхании. Азот вытягивается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в нее другими бактериями.

Кругооборот элементов и веществ осуществляется за счет саморегулирующихся процессов, в которых принимают участие все составные экосистем. Эти процессы являются безвыходными. В природе нет ничего напрасного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот. Существует закон глобального замыкания биохимического кругооборота в биосфере, действующий на всех этапах ее развития, как и правило увеличения замкнутости биохимического кругооборота в походке сукцессии. В процессе эволюции биосферы увеличивается роль биологических компонентов в замыкании биохимического кругооборота. Еще большую роль в биохимическом кругообороте проявляет человек. Но ее роль осуществляется в противоположном направлении. Человек усиливает кругооборот веществ, который уже сложился, и в этом сказывается его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому на Земле появилось жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород, и уменьшалось содержимое углекислого газа. Ныне содержимое углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглощающей возможности «зеленого пояса». Последнее есть результат уменьшения количества самых зеленых растений, а также связано с тем, что пыль и прочие загрязняющие частицы в атмосфере отбивают те лучи, которые поступают в атмосферу. В результате антропогенной деятельности степень замкнутости биохимических кругооборотов уменьшается. Хотя она довольно высокая (для разнообразных элементов и веществ она не одинаковая), но, тем не менее, не абсолютная, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (высочайшая степень замкнутости биохимических кругооборотов наблюдается в тропических экосистемах - наиболее давних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно изменяться, а скорее о влиянии человека на скорость и направление изменений и на распространение их границ, которая поднимает правило меры преобразования природы. Последнее формулируется таким образом: в процессе эксплуатации естественных систем нельзя превышать некоторые границы, которые разрешают этим системам сохранять равновесие.

2) Круговороты вещества в биосфере.

Процессы фотосинтеза органического вещества из неорганических компонентов длятся миллионы лет и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их кругообороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают почти 350 млрд. тонн углекислого газа, выделяют в атмосферу около 250 млрд. тонн кислорода и расщепляют 140 млрд. тонн воды, образовывая свыше 230 млрд. тонн органического вещества (в перерасчете на сухой вес).

Огромные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и выпаривания. Это приводит к тому, что вода поверхностного пласта океана фильтруется планктоном за 40 суток, а вся другая вода океана - приблизительно, чем год. Весь углекислый газ атмосферы возобновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в кругооборот включается 6 млрд. тонн азота, 210 млрд. тонн фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). Существование этих кругооборотов придает экосистемам определенную продолжительность.

Различают два основных кругооборота: большой (геологический) и маленький (биологический).

Большой кругооборот, длится миллионы лет и состоит в том, что горные породы подлежат разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов на протяжении продолжительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается снова.

Маленький кругооборот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самых этих растений, так и других организмов (как правило животных), которые съедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) снова разлагаются к минеральным компонентам, доступных растениям и что втягиваются ими в потоки вещества. Кругооборот химических веществ из неорганической среды через растительные и животные организмы назад в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биохимическим циклом. В такие циклы втянуты практически все химические элементы и прежде всего те, что принимают участие в построении живой клетки. Так, тело человека состоит из кислорода (62.8%), углерода (19.37%), водорода (9.31%), азота (5.14%), кальция (1.38%), фосфора (0.64%) и еще приблизительно 30 элементов.

3) Круговорот углерода .

4)Круговорот воды

Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы - это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища - так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее.

В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.

5) Круговорот углерода

Углерод в биосфере часто представлен наиболее подвижной формой - углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно - зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане.

В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

6) Круговорот кислорода

Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

7) Круговорот азота

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:

2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих нитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

8) Круговорот фосфора

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.

В отличие, например, от углекислого газа, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет "свободного возврата" в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.

Следовательно, фосфат и другие минеральные биогены почвы циркулируют в экосистеме лишь в том случае, если содержащие их "отходы" жизнедеятельности откладываются в местах поглощения данного элемента. В естественных экосистемах так в основном и происходит. Когда же в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя, например, урожай вместе с накопленными из почвы биогенами на большие расстояния к потребителям.

9) Круговорот серы

Сера является важным составным элементом живого вещества. Большая часть ее в живых организмах находится в виде органических соединений. Кроме того, сера входит в состав некоторых биологически активных веществ: витаминов, а также ряда веществ, выступающих в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты.

Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов.

В изверженных породах сера находится преимущественно в виде сульфидных минералов: пирита, пирронита, халькопирита, в осадочных породах содержится в глинах в виде гипсов, в ископаемых углях - в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются ее органические соединения.

В связи с окислением сульфидных минералов в процессе выветривания сера в виде сульфатиона переносится природными водами в Мировой океан. Сера поглощается морскими организмами, которые богаче ее неорганическими соединениями, чем пресноводные и наземные.

Освещая вопрос о круговороте химических элементов, важно отметить, что в природе постоянно протекают различные химические реакции. Часть этих реакций проходит без участия живых существ, а часть - при их непосредственном участии, т. е. в живой природе. В результате химических процессов атомы перемещаются, движутся. Вследствие этого происходит обмен веществ и энергии между всеми оболочками Земли: литосферой, атмосферой, гидросферой, биосферой. Круговорот химических элементов является причиной постоянства протекания химических реакций. Можно сказать, что благодаря круговороту химических элементов возможна жизнь на Земле.

Круговорот веществ - это повторяющиеся процессы превращения и перемещения веществ в природе, имеющие более или менее циклический характер. Особо важную роль для жизни на Земле играют круговороты углерода и кислорода.

Далее можно рассмотреть, например, круговорот кислорода. Простое вещество кислород содержится в атмосфере, а как химический элемент он входит в состав многих природных соединений. Основная масса кислорода содержится в земной коре, где он связан с кремнием, алюминием, железом, образуя горные породы и минералы: оксиды (SiO2, A12O3,

Fe2O3); карбонаты (СаСО3, MgCO3, FeCO3); сульфаты (CaSO4, квасцы) и др.

Минералы и горные породы в процессе многовекового выветривания могут оказаться на поверхности, где получат запас энергии, исходящей от Солнца. Энергия расходуется на перестройку кристаллов горных пород, содержащих кислород, и останется там как внутренняя энергия образовавшихся кристаллических соединений. Эти породы с течением времени будут изменять свою структуру, разрушаться, растворяться, перекристаллизовываться, вступать в химические реакции и т. д., поглощая и освобождая энергию. Таким образом, кислород в земной коре играет большую роль в обмене энергии между слоями литосферы.

В природе происходит много реакций, в ходе которых кислород расходуется (дыхание, горение, медленное окисление и др.), и лишь одна реакция, в результате которой выделяется кислород. Это фотосинтез - процесс, который происходит на свету в листьях растений:

Большая часть кислорода (3/4) выделяется растениями суши, а 1/4 образуется в процессе жизнедеятельности растений Мирового океана.

Молекулярный кислород есть и в гидросфере. В природных водах всегда растворен очень большой объем кислорода.

Уравнение реакции фотосинтеза записывать не обязательно.

Круговорот кислорода связывает атмосферу с гидросферой и литосферой.

Кратко основные звенья круговорота кислорода можно обозначить так: фотосинтез (выделение О2) - окисление элементов на поверхности Земли - поступление соединений в глубинные зоны земной коры - частичное восстановление соединений в недрах Земли с образованием СО2 и Н2О - вынос СО2 и Н2О в атмосферу и гидросферу - фотосинтез.

Нетрудно заметить, что во многих процессах принимают участие углеродсодержащие соединения. Из них наиболее известными являются нефть, каменный уголь, торф, природный газ, а также карбонаты. С ними в природе также происходят химические процессы:

Из приведенных уравнений видно, что превращения углерода и кислорода тесно связаны между собой, что свидетельствует о единстве круговоротов различных химических элементов в природе.

Роль живых существ, в частности человека, в круговороте химических элементов все увеличивается. Например, вследствие деятельности человека увеличивается выделение многих веществ в атмосферу, гидросферу и в почву. Выделение автомобилями, ТЭЦ, заводами и фабриками в атмосферу оксида углерода (IV) и активная вырубка лесов создает опасность увеличения содержания этого оксида в атмосфере, что может привести к парниковому эффекту, изменению климата на планете.

При ответе на этот вопрос важно использовать схемы круговоротов различных элементов, имеющиеся в химическом кабинете.

Слайд 2

Цель и задачи проекта. Цель: Задачи: Рассмотреть круговороты веществ и взаимодействие их между собой. 1) Изучить литературу по данной теме. 2) Изучить круговороты химических элеиентов и их взаимосвязь. 3) Рассмотреть антропогенное влияние на круговороты веществ в природе.

Слайд 3

Слайд 4

Введение. Круговорот веществ в природе - важнейшее экологическое понятие, отражающее природную закономерность распределения и превращения веществ в биосфере. С помощью этого понятия формируются представления о циклических процессах в природе, механизмах их протекания и значимости существования жизни на Земле.

Слайд 5

Глава I. Круговороты химических элементов в природе. Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

Слайд 6

1.1. Круговорот азота. Основное хранилище азота-атмосфера, где он существует в виде простого вещества N2, которое химически инертно. Лишь во время гроз или в результате деятельности нитрифицирующих бактерий свободны азот превращается в связанный. В связанной форме (NH4+) он попадает в почву или океан, где его немедленно поглащают растения. Когда они отмирают, азот возвращается в почву или океан, после чего снова довольно быстро поглащается растениями.

Слайд 7

Схема круговорота азота в природе.

Слайд 8

1.2. Круговорот углерода. Подобно другим элементам, атомы углерода в природе не удерживаются постоянно в одном и том же соединении, а переходят из одних веществ в другие. В результате процесса жизнедеятельности зелёных растений – фотосинтеза – углерод из атмосферы, в которой он содержится в составе оксида углерода (IV), переходит в растения. Так образуются в природе кислород в свободном состоянии и органические вещества растений, которые служат пищей животным. Углерод при этом переходит в организм животных, в нём вновь превращается в оксид углерода (IV) и возвращается через органы дыхания в атмосферу. Связывается оксид углерода (IV) также в процессе выветривания минералов и горных пород, а возвращается в атмосферу вулканическими и минеральными источниками.

Слайд 9

Схема круговорота углерода в природе.

Слайд 10

Круговорот фосфора. 1.3. Круговорот фосфора несколько проще круговорота азота, поскольку фосфор встречается лишь в немногих химических формах: этот элемент циркулирует,постепенно переходя из органических соединений в фосфат которые могут усваиваться растениями. Но, в отличае от азота, резервным фондом фосфора служит не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи. Эти породы постепенно подвергаются эрозии, высвобождая фосфаты в экосистемы. Большое количество фосфора попадает в море и там отлагается. Именно поэтому возвращение фосфора в круговорот не возмещает его потерь. Круговорот фосфора так же важен для живых организмов, как и круговорот азота.Этот элемент-один из главных компонентов нуклеиновых кислот,клеточных мембран, систем переноса энергии, костной ткани и дентина.

Слайд 11

Схема круговорота фосфора в природе.

Слайд 12

Глава II. Антропогенное влияние на круговороты химических элементов в природе. Производственная деятельность человека вносит в круговороты веществ дополнительные потоки токсичных элементов. Миграция этих элементов в почву и реки повышает вероятность их контакта с живыми организмами. Так, во многих круговоротах участвуют микроорганизмы. В одних случаях они превращают нерастворимые химические соединения в растворимые, многие из которых ядовиты. В других их деятельность подавляется (иногда полностью) из-за загрязнения природной среды. И то и другое нарушает стабильность биохимических циклов. Циклы кислорода, углерода, азота легко восстанавливаются за счёт механизма саморегуляции (благодаря наличию крупных атмосферных или океанических фондов они быстро восполняют потери веществ). Ко второму типу относят осадочные циклы (круговороты серы, фосфора, железа). Они легко нарушаются и с трудом восстанавливаются, потому что основная масса вещества сосредоточенна в относительно малоактивном и малоподвижном фонде в земной коре. Антропогенное влияние на круговороты заключается в том, что человек, используя в своей деятельности почти все имеющиеся в природе элементы, в значительной степени ускоряет движение многих веществ и тем самым нарушает цикличность круговоротов. Таким образом, круговороты веществ выходят из равновесия в том случае, если химические элементы либо накапливаются в экосистеме, либо удаляются из неё. Потому природоохранные мероприятия должны способствовать возвращению веществ в их круговороты.

Слайд 13

Заключение. В данной работе мы дали понятие круговорота химических элементов в природе. С помощью этого понятия сформировали представление о циклических процессах в природе, механизмах их протекания и значимости для существования жизни на Земле. Круговороты химических элементов представляют особое значение для формирования и развития жизни. Также дали оценку влиянию человека на различные круговороты. Таким образом, вмешательство человека неблаготворно влияет на круговороты химических элементов в природе. В наше время существует множество природоохранных законов. Все они направлены на защиту природы от вредного вмешательства человека, т.е на сохранение круговоротов химических элементов в природе.

Слайд 14

Спасибо за внимание!

Посмотреть все слайды