Происходит процесс фотосинтеза значит. Процесс фотосинтеза в листьях растений

Жизнь человека, как и всего живого на Земле невозможна без дыхания. Мы вдыхаем из воздуха кислород, а выдыхаем углекислый газ. Но почему же кислород не кончается? Оказывается, воздух в атмосфере непрерывно подпитывается кислородом. И происходит это насыщение именно благодаря фотосинтезу.

Фотосинтез - просто и понятно!

Каждый человек обязан понимать, что такое фотосинтез. Для этого совсем не нужно писать сложные формулы, достаточно понять всю важность и волшебство этого процесса.

Главную роль в процессе фотосинтеза играют растения – трава, деревья, кустарники. Именно в листьях растений на протяжении миллионов лет происходит удивительное превращение углекислого газа в кислород, так необходимый для жизни любителям дышать. Попробуем разобрать весь процесс фотосинтеза по порядку.

1. Растения берут из почвы воду с растворенными в ней минеральными веществами – азот, фосфор, марганец, калий, различные соли – всего больше 50 различных химических элементов. Это необходимо растениям для питания. Но из земли растения получают лишь 1/5 часть необходимых веществ. Остальные 4/5 они получают из воздуха!

2. Из воздуха растения поглощают углекислый газ. Тот самый углекислый газ, который мы выдыхаем каждую секунду. Углекислым газом растения дышат, как мы с вами дышим кислородом. Но и этого мало.

3. Незаменимый компонент в природной лаборатории - солнечный свет. Солнечные лучи в листьях растений пробуждают необычайную химическую реакцию. Как же это происходит?

4. В листьях растений есть удивительное вещество – хлорофилл . Хлорофилл способен улавливать потоки солнечного света и неутомимо перерабатывать полученные воду, микроэлементы, углекислый газ в органические вещества, необходимые каждому живому существу нашей планеты. В этот момент растения выделяют в атмосферу кислород! Именно эту работу хлорофилла ученые называют сложным словом – фотосинтез .

Презентацию по теме Фотосинтез можно скачать на образовательном портале

Так почему трава зелёная?

Теперь, когда мы знаем, что в клетках растений, содержится хлорофилл, на этот вопрос ответить очень легко. Недаром с древнегреческого языка хлорофилл переводится как «зелёный лист». Для фотосинтеза хлорофилл использует все лучи солнечного света, кроме зеленого. Мы видим траву, листья растений зелеными именно потому, что хлорофилл получается зеленым.

Значение фотосинтеза.

Значение фотосинтеза невозможно переоценить - без фотосинтеза в атмосфере нашей планеты накопилось бы слишком много углекислого газа, большинство живых организмов просто не смогли бы дышать и погибли. Наша Земля превратилась бы в безжизненную планету. Для того чтобы этого не допустить каждому человеку планеты Земля нужно помнить, что мы очень обязаны растениям.

Именно поэтому так важно в городах делать как можно больше парков и зелёных насаждений. Беречь от уничтожения тайгу и джунгли. Или просто посадить дерево рядом с домом. Или не ломать ветки. Только участие каждого человека планеты Земля поможет сохранить жизнь на родной планете.

Но важность фотосинтеза не ограничивается переработкой углекислого газа в кислород. Именно в результате фотосинтеза сформировался озоновый слой в атмосфере, защищающий планету от губительных лучей ультрафиолета. Растения это пища для большинства живых существ на Земле. Пища необходимая и полезная. Питательность растений это тоже заслуга фотосинтеза.

С недавнего времени хлорофилл стали активно использовать в медицине. Люди издавна знали, что больные животные инстинктивно едят зеленые листья, чтобы вылечиться. Ученые выяснили, что хлорофилл сходен с веществом в клетках крови человека и способен творить настоящие чудеса.

Воду и минеральные вещества растения получают с помощью корней. Листья обеспечивают органическое питание растений. В отличие от корней они находятся не в почве, а в воздушной среде, поэтому осуществляют не почвенное, а воздушное питание.

Из истории изучения воздушного питания растений

Знания о питании растений накапливались постепенно.

Около 350 лет назад голландский ученый Ян Гельмонт впервые поставил опыт по изучению питания растений. В глиняном горшке с почвой он выращивал иву, добавляя туда только воду. Опадавшие листья ученый тщательно взвешивал. Через пять лет масса ивы вместе с опавшими листьями увеличилась на 74,5 кг, а масса почвы уменьшилась всего на 57 г. На основании этого Гельмонт пришел к выводу, что все вещества в растении образуются не из почвы, а из воды. Мнение о том, что растение увеличивается в размерах только за счет воды, сохранялось до конца XVIII века.

В 1771 г. английский химик Джозеф Пристли изучал углекислый газ, или, как он его называл, «испорченный воздух» и сделал замечательное открытие. Если зажечь свечу и накрыть оо стеклянным колпаком, то, немного погорев, она погаснет.

Мышь под таким колпаком начинает задыхаться. Однако если под колпак вместе с мышью поместить ветку мяты, то мышь не задыхается и продолжает жить. Значит, растения «исправляют» воздух, испорченный дыханием животных, то есть превращают углекислый газ в кислород.

В 1862 г. немецкий ботаник Юлиус Сакс с помощью опытов доказал, что зеленые растения не только выделяют кислород, но и создают органические вещества, служащие пищей всем другим организмам.

Фотосинтез

Главное отличие зеленых растений от других живых организмов - наличие в их клетках хлоропластов, содержащих хлорофилл. Хлорофилл обладает свойством улавливать солнечные лучи, энергия которых необходима для создания органических вещсств. Процесс образования органического вещества из углекислого газа и воды с помощью солнечной энергии называется фотосинтезом (греч. рЬо1оз свет). В процессе фотосинтеза образуются не только органические вещества - сахара, но и выделяется кислород.

Схематически процесс фотосинтеза можно изобразить так:

Вода поглощается корнями и по проводящей системе корней и стебля передвигается к листьям. Углекислый газ - составная часть воздуха. Он поступает в листья через открытые устьица. Поглощению углекислого газа способствует строение листа: плоская поверхность листовых пластинок, увеличивающая площадь соприкосновения с воздухом, и наличие большого числа устьиц в кожице.

Образующиеся в результате фотосинтеза сахара превращаются в крахмал. Крахмал это органическое вещество, которое не растворяется в воде. Кго легко обнаружить с помощью раствора йода.

Доказательства образования крахмала в листьях на свету

Докажем, что в зеленых листьях растений из углекислого газа и воды образуется крахмал. Для этого рассмотрим опыт, который в свое время был поставлен Юлиусом Саксом.

Комнатное растение (герань или примулу) выдерживают двое суток в темноте, чтобы весь крахмал израсходовался на процессы жизнедеятельности. Затем несколько листьев закрывают с двух сторон черной бумагой так, чтобы была прикрыта только их часть. Днем растение выставляют на свет, а ночью его дополнительно освещают с помощью настольной лампы.

Через сутки исследуемые листья срезают. Чтобы выяснить, в какой части листа образовался крахмал, листья кипятят в воле (чтобы набухли крахмальные зерна), а затем выдерживают в горячем спирте (хлорофилл при этом растворяется, и лист обесцвечивается). Затем листья промывают в воде и действуют на них слабым раствором йода. Тс участки листьев, которые были на свету, приобретают от действия йода синюю окраску. Это означает, что крахмал образовался в клетках освещенной части листа. Следовательно, фотосинтез происходит только на свету.

Доказательства необходимости углекислого газа для фотосинтеза

Чтобы доказать, что для образования крахмала в листьях необходим углекислый газ, комнатное растение также предварительно выдерживают в темноте. Затем один из листьев помещают в колбу с небольшим количеством известковой воды. Колбу закрывают ватным тампоном. Растение выставляют на свет. Углекислый газ поглощается известковой водой, поэтому его в колбе не будет. Лист срезается, и так же, как в предыдущем опыте, исследуется на наличие крахмала. Он выдерживается в горячей воде и спирте, обрабатывается раствором йода. Однако в этом случае результат опыта будет иным: лист не окрашивается в синий цвет, т.к. крахмал в нем не содержится. Следовательно, для образования крахмала, кроме света и воды, необходим углекислый газ.

Таким образом, мы ответили на вопрос, какую пищу получает растение из воздуха. Опыт показал, что это углекислый газ. Он необходим для образования органического вещества.

Организмы, самостоятельно создающие органические вещества для построения своего тела, называются автотрофамн (греч. autos - сам, trofe - пища).

Доказательства образования кислорода в процессе фотосинтеза

Чтобы доказать, что при фотосинтезе растения во внешнюю среду выделяют кислород, рассмотрим опыт с водным растением элодеей. Побеги элодеи опускают в сосуд с водой и сверху накрывают воронкой. На конец воронки надевают пробирку с водой. Растение выставляют на свет на двое-трое суток. На свету элодея выделяет пузырьки газа. Они скапливаются в верхней части пробирки, вытесняя воду. Для того чтобы выяснить, какой это газ, пробирку аккуратно снимают и вносят в нее тлеющую лучинку. Лучинка ярко вспыхивает. Это значит, что в колбе накопился газ, поддерживающий горение кислород.

Космическая роль растений

Растения, содержащие хлорофилл, способны усваивать солнечную энергию. Поэтому К.А. Тимирязев назвал их роль на Земле космической. Часть энергии Солнца, запасенная в органическом веществе, может долго сохраняться. Каменный уголь, торф, нефть образованы веществами, которые в далекие геологические времена были созданы зелеными растениями и вобрали в себя энергию Солнца. Сжигая природные горючие материалы, человек освобождает энергию, запасенную миллионы лет назад зелеными растениями.

Фотосинтез (Тесты)

1. Организмы, образующие органические вещества только из органических:

1.гетеротрофы

2.автотрофы

3.хемотрофы

4.миксотрофы

2. В световую фазу фотосинтеза происходит:

1.образование АТФ

2.образование глюкозы

3.выделение углекислого газа

4.образование углеводов

3. При фотосинтезе происходит образование кислорода, выделяющегося в процессе:

1.биосинтеза белка

2.фотолиза

3.возбуждения молекулы хлорофилла

4.соединения углекислого газа и воды

4. В результате фотосинтеза энергии света превращается в:

1. тепловую энергию

2.химическую энергию неорганических соединений

3. электрическую энергию тепловую энергию

4.химическую энергию органических соединений

5. Дыхание у анаэробов в живых организмах протекает в процессе:

1.кислородного окисления

2.фотосинтеза

3.брожения

4.хемосинтеза

6. Конечными продуктами окисления углеводов в клетке являются:

1.АДФ и вода

2.аммиак и углекислый газ

3.вода и углекислый газ

4.аммиак, углекислый газ и вода

7. На подготовительном этапе расщепления углеводов происходит гидролиз:

1. целлюлозы до глюкозы

2. белков до аминокислот

3.ДНК до нуклеотидов

4.жиров до глицерина и карбоновых кислот

8. Обеспечивают кислородное окисление ферменты:

1.пищеварительного тракта и лизосом

2.цитоплазмы

3.митохондрий

4.пластид

9. При гликолизе 3моль глюкозы запасает в форме АТФ:

10.Два моль глюкозы подверглось полному окислению в клетке животного, при этом выделилось углекислого газа:

11. В процессе хемосинтеза организмы преобразуют энергию окисления:

1.соединений серы

2.органических соединений

3.крахмала

12. Одному гену соответствует информация о молекуле:

1.аминокислоты

2.крахмала

4.нуклеотида

13.Генетический код состоит из трех нуклеотидов, значит он:

1. специфичен

2.избыточен

3.универсален

4.триплетен

14. В генетическом коде одной аминокислоте соответствует 2-6 триплетов, в этом проявляется его:

1.непрерывность

2.избыточность

3.универсальность

4.специфичность

15. Если нуклеотидный состав ДНК – АТТ-ЦГЦ-ТАТ, то нуклеотидный состав и-РНК:
1.ТАА-ЦГЦ-УТА

2.УАА-ГЦГ-АУА

3.УАА-ЦГЦ-АУА

4.УАА-ЦГЦ-АТА

16. Синтез белка не происходит на собственных рибосомах у:

1.вируса табачной мозаики

2.дрозофилы

3.муравья

4.холерного вибриона

17. Антибиотик:

1. является защитным белком крови

2.синтезирует новый белок в организме

3.является ослабленным возбудителем болезни

4.подавляет синтез белка возбудителя болезни

18. Участок молекулы ДНК, на котором происходит репликация, имеет 30.000 нуклеотидов (обе цепи). Для репликации потребуется:

19.Сколько разных аминокислот может транспортировать одна т-РНК:

1.всегда одну

2.всегда две

3.всегда три

4.некоторые могут транспортировать одну, некоторые – несколько.

20. Участок ДНК, с которого происходит транскрипция, содержит 153 нуклеотида, на данном участке закодирован полипептид из:

1.153 аминокислот

2.51 аминокислоты

3.49 аминокислот

4.459 аминокислот

21. При фотосинтезе кислород образуеться р результате

1.​ фотосинтеза вода

2.​ разложения углеродного газа

3.​ востоновления углекислого газа до глюкозы

4.​ синтеза АТФ

В процессе фотосинтеза происходит

1.​ синтез углеводов и выделение кислорода

2.​ испарение воды и поглощение кислорода

3.​ газообмен и синтез липидов

4.​ выделение углекислого газа и синтез белка

23. В световую фазуфотосинтеза используеться энергия солнечного света для сентеза молекул

1.​ липидов

2.​ белков

3.​ нуклеиновая кислота

24. Под воздействием энергии солнечного света электрон поднимаеться на болие высокий энергетический уровень в молекуле

1.​ белка

2.​ глюкозы

3.​ хлорофила

4.​ биосинтеза белка

25. Растительная клетка, как и животная, получает энергию в процессе. .

1.​ окисления органических веществ

2.​ биосинтеза белка

3.​ синтеза липидов

4.​ синтеза нуклеиновых кислот

Фотосинтез протекает в хлоропластах клеток растений. В хлоропластах содержится пигмент хлорофилл, который участвует в процессе фотосинтеза и придает растениям зеленый цвет. Отсюда следует, что фотосинтез протекает только в зеленых частях растений.

Фотосинтез - это процесс образования органических веществ из неорганических. В частности, органическим веществом является глюкоза, а неорганическими - вода и углекислый газ.

Также для протекания фотосинтеза важно наличия солнечного света. Энергия света запасается в химических связях органического вещества. В этом и есть главный смысл фотосинтеза: связать энергию, которая в дальнейшем будет использоваться для поддержания жизни растения или животных, которые съедят это растение. Органическое вещество выступает лишь формой, способом для сохранения солнечной энергии.

Когда в клетках протекает фотосинтез, в хлоропластах и на их мембранах идут различные реакции.

Свет нужен не для всех из них. Поэтому выделяют две фазы фотосинтеза: световую и темновую. Для темновой фазы свет не нужен, и она может происходить ночью.

Углекислый газ попадает в клетки из воздуха через поверхность растения. Вода идет из корней по стеблю.

В результате процесса фотосинтеза образуется не только органическое вещество, но и кислород. Кислород выделяется в воздух через поверхность растения.

Образовавшаяся в результате фотосинтеза глюкоза переносится в другие клетки, превращается в крахмал (запасается), используется на процессы жизнедеятельности.

Главным органом, в котором протекает фотосинтез, у большинства растений является лист. Именно в листьях много фотосинтезирующих клеток, составляющих фотосинтезирующую ткань.

Поскольку для фотосинтеза важен солнечный свет, то листья обычно имеют большую поверхность. Другими словами, они плоские и тонкие. Чтобы свет попадал на все листья, у растений они располагаются так, чтобы почти не затенять друг друга.

Итак, для протекания процесса фотосинтеза нужен углекислый газ, вода и свет . Продуктами фотосинтеза являются органическое вещество (глюкоза) и кислород . Фотосинтез протекает в хлоропластах , которых больше всего в листьях.

В растениях (преимущественно в их листьях) на свету протекает фотосинтез. Это процесс, при котором из углекислого газа и воды образуется органическое вещество глюкоза (один из видов сахаров). Далее глюкоза в клетках превращается в более сложное вещество крахмал. И глюкоза, и крахмал являются углеводами.

В процессе фотосинтеза образуется не только органическое вещество, но также, в качестве побочного продукта, выделяется кислород.

Углекислый газ и вода - это неорганические вещества, а глюкоза и крахмал - органические.

Поэтому часто говорят, что фотосинтез - это процесс образования органических веществ из неорганических на свету. Только растения, некоторые одноклеточные эукариоты и некоторые бактерии способны к фотосинтезу. В клетках животных и грибов такого процесса нет, поэтому они вынуждены поглощать из окружающей среды органические вещества. В связи с этим растения называют автотрофами, а животных и грибов - гетеротрофами.

Процесс фотосинтеза у растений протекает в хлоропластах, в которых содержится зеленый пигмент хлорофилл.

Итак, для протекания фотосинтеза необходимы:

    хлорофилл,

    углекислый газ.

В процессе фотосинтеза образуются:

    органические вещества,

    кислород.

Растения приспособлены к улавливанию света. У многих травянистых растений листья собраны в так называемую прикорневую розетку, когда листья не затеняют друг друга. Для деревьев характерна листовая мозаика, при которой листья растут так, чтобы как можно меньше затенять друг друга. У растений листовые пластинки могут поворачиваться к свету за счет изгибов черешков листьев. При всем этом существуют тенелюбивые растения, которые могут расти только в тени.

Вода для фотосинтеза поступает в листья из корней по стеблю . Поэтому важно, чтобы растение получало достаточное количество влаги. При недостатке воды и некоторых минеральных веществ процесс фотосинтеза тормозится.

Углекислый газ для фотосинтеза берется непосредственно из воздуха листьями . Кислород, который вырабатывается растением в процессе фотосинтеза, наоборот, выделяется в воздух. Газообмену способствуют межклетники (промежутки между клетками).

Образовавшиеся в процессе фотосинтеза органические вещества отчасти используются в самих листьях, но в основном оттекают во все другие органы и превращаются в другие органические вещества, используются при энергетическом обмене, превращаются в запасные питательные вещества.

Фотосинтез

Фотосинтез - процесс синтеза органических веществ за счет энергии света. Организмы, которые способны из неорганических соединений синтезировать органические вещества, называют автотрофными. Фотосинтез свойственен только клеткам автотрофных организмов. Гетеротрофные организмы не способны синтезировать органические вещества из неорганических соединений.
Клетки зеленых растений и некоторых бактерий имеют специальные структуры и комплексы химических веществ, которые позволяют им улавливать энергию солнечного света.

Роль хлоропластов в фотосинтезе

В клетках растений имеются микроскопические образования - хлоропласты. Это органоиды, в которых происходит поглощение энергии и света и превращение ее в энергию АТФ и иных молекул - носителей энергии. В гранах хлоропластов содержится хлорофилл - сложное органическое вещество. Хлорофилл улавливает энергию света для использования ее в процессах биосинтеза глюкозы и других органических веществ. Ферменты, необходимые для синтеза глюкозы, расположены также в хлоропластах.

Световая фаза фотосинтеза

Квант красного света, поглощенный хлорофиллом, переводит электрон в возбужденное состояние. Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Возбужденный светом электрон можно сравнить с камнем, поднятым на высоту, который также приобретает потенциальную энергию. Он теряет ее, падая с высоты. Возбужденный электрон, как по ступеням, перемещается по цепи сложных органических соединений, встроенных в хлоропласт. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ. Растративший энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает электрон хлорофилла. Он снова проходит по тому же пути, расходуя энергию на образования молекул АТФ.
Ионы водорода и электроны, необходимые для восстановления молекул-носителей энергии, образуются при расщеплении молекул воды. Расщепление молекул воды в хлоропластах осуществляется специальным белком под воздействием света. Называется этот процесс фотолизом воды .
Таким образом, энергия солнечного света непосредственно используется растительной клеткой для:
1. возбуждения электронов хлорофилла, энергия которых далее расходуется на образование АТФ и других молекул-носителей энергии;
2. фотолиза воды, поставляющего ионы водорода и электроны в световую фазу фотосинтеза.
При этом выделяется кислород как побочный продукт реакций фотолиза.

Этап, в течение которого за счет энергии света образуются богатые энергией соединения - АТФ и молекулы-носители энергии, называют световой фазой фотосинтеза .

Темновая фаза фотосинтеза

В хлоропластах есть пятиуглеродные сахара, один из которых рибулозодифосфат , является акцептором углекислого газа. Особый фермент связывает пятиуглеродный сахар с углекислым газом воздуха. При этом образуется соединения, которые ща счет энергии АТФ и иных молекул-носителей энергии восстанавливаются до шестиуглеродной молекулы глюкозы.

Таким образом, энергия света, преобразованная в течение световой фазы в энергию АТФ и иных молекул-носителей энергии, используется для синтеза глюкозы.

Эти процессы могут идти в темноте.
Из растительных клеток удалось выделить хлоропласты, которые в пробирке под действием света осуществляли фотосинтез - образовывали новые молекулы глюкозы, при этом поглощали углекислый газ. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если к хлоропластам добавляли АТФ и восстановленные молекулы-носители энергии, то синтез глюкозы возобновлялся и мог идти в темноте. Это означает, что свет действительно нужен только для синтеза АТФ и зарядки молекул-носителей энергии. Поглощение углекислого газа и образование глюкозы в растениях называют темновой фазой фотосинтеза , поскольку она может идти в темноте.
Интенсивное освещение, повышенное содержание углекислого газа в воздухе приводят к повышению активности фотосинтеза.

Другие заметки по биологии

Больше интересных статей:


Пластиды бывают трех видов:

  • хлоропласты - зеленые, функция - фотосинтез
  • хромопласты - красные и желтые, являются полуразрушенными хлоропластами, могут придавать яркую окраску лепесткам и плодам.
  • лейкопласты - бесцветные, функция - запас веществ.

Строение хлоропластов

Покрыты двумя мембранами. Наружная мембрана гладкая, внутренняя имеет выросты внутрь - тилакоиды. Стопки коротких тилакоидов называются граны , они увеличивают площадь внутренней мембраны, чтобы расположить на ней как можно больше ферментов фотосинтеза.


Внутренняя среда хлоропласта называется строма. В ней находятся кольцевая ДНК и рибосомы, за счет них хлоропласты самостоятельно делают для себя часть белков, поэтому их называют полуавтономными органоидами. (Считается, что раньше и пластиды были свободными бактериями, которые были поглощены крупной клеткой, но не переварены.)

Фотосинтез (простой)

В зеленых листьях на свету
В хлоропластах с помощью хлорофилла
Из углекислого газа и воды
Синтезируется глюкоза и кислород.

Фотосинтез (средняя сложность)

1. Световая фаза.
Происходит на свету в гранах хлоропластов. Под действием света происходит разложение (фотолиз) воды, получается кислород, который выбрасывается, а так же атомы водорода (НАДФ-Н) и энергия АТФ, которые используются в следующей стадии.


2. Темновая фаза.
Происходит как на свету, так и в темноте (свет не нужен), в строме хлоропластов. Из углекислого газа, полученного из окружающей среды и атомов водорода, полученных в предыдущей стадии, за счет энергии АТФ, полученной в предыдущей стадии, синтезируется глюкоза.

1. Установите соответствие между процессом фотосинтеза и фазой, в которой он происходит: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильном порядке.
А) образование молекул НАДФ-2Н
Б) выделение кислорода
В) синтез моносахарида
Г) синтез молекул АТФ
Д) присоединение углекислого газа к углеводу

Ответ


2. Установите соответствие между характеристикой и фазой фотосинтеза: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильном порядке.
А) фотолиз воды
Б) фиксация углекислого газа
В) расщепление молекул АТФ
Г) возбуждение хлорофилла квантами света
Д) синтез глюкозы

Ответ


3. Установите соответствие между процессом фотосинтеза и фазой, в которой он происходит: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильной последовательности.
А) образование молекул НАДФ*2Н
Б) выделение кислорода
В) синтез глюкозы
Г) синтез молекул АТФ
Д) восстановление углекислого газа

Ответ


4. Установите соответствие между процессами и фазой фотосинтеза: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) полимеризация глюкозы
Б) связывание углекислого газа
В) синтез АТФ
Г) фотолиз воды
Д) образование атомов водорода
Е) синтез глюкозы

Ответ


5. Установите соответствие между фазами фотосинтеза и их характеристиками: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) осуществляется фотолиз воды
Б) образуется АТФ
В) кислород выделяется в атмосферу
Г) протекает с затратами энергии АТФ
Д) реакции могут протекать как на свету, так и в темноте

Ответ

ФОРМИРУЕМ 6:
А) восстановление НАДФ+
Б) транспорт ионов водорода через мембрану
В) преобразование НАДФ-2Р в НАДФ+

Г) перемещение возбужденных электронов

Проанализируйте таблицу. Заполните пустые ячейки таблицы, используя понятия и термины, приведенные в списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) мембраны тилакоидов
2) световая фаза
3) фиксация неорганического углерода
4) фотосинтез воды
5) темновая фаза
6) цитоплазма клетки

Ответ


Выберите три варианта. Темновая фаза фотосинтеза характеризуется
1) протеканием процессов на внутренних мембранах хлоропластов
2) синтезом глюкозы
3) фиксацией углекислого газа
4) протеканием процессов в строме хлоропластов
5) наличием фотолиза воды
6) образованием АТФ

Ответ



1. Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

2) накапливает молекулы АТФ
3) обеспечивает фотосинтез

5) обладает полуавтономностью

Ответ



2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) одномембранный органоид
2) состоит из крист и хроматина
3) содержит кольцевую ДНК
4) синтезирует собственный белок
5) способен к делению

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания строения и функций хлоропласта. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) является двумембранным органоидом
2) имеет собственную замкнутую молекулу ДНК
3) является полуавтономным органоидом
4) формирует веретено деления
5) заполнен клеточным соком с сахарозой

Ответ


Выберите один, наиболее правильный вариант. Клеточный органоид, содержащий молекулу ДНК
1) рибосома
2) хлоропласт
3) клеточный центр
4) комплекс Гольджи

Ответ


Выберите один, наиболее правильный вариант. В синтезе какого вещества участвуют атомы водорода в темновой фазе фотосинтеза?
1) НАДФ-2Н
2) глюкозы
3) АТФ
4) воды

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для определения процессов световой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фотолиз воды


4) образование молекулярного кислорода

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В световую фазу фотосинтеза в клетке
1) образуется кислород в результате разложения молекул воды
2) происходит синтез углеводов из углекислого газа и воды
3) происходит полимеризация молекул глюкозы с образованием крахмала
4) осуществляется синтез молекул АТФ
5) энергия молекул АТФ расходуется на синтез углеводов

Ответ


Выберите один, наиболее правильный вариант. Какой клеточный органоид содержит ДНК
1) вакуоль
2) рибосома
3) хлоропласт
4) лизосома

Ответ


Вставьте в текст «Синтез органических веществ в растении» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите выбранные цифры в порядке, соответствующем буквам. Энергию, необходимую для своего существования, растения запасают в виде органических веществ. Эти вещества синтезируются в ходе __________ (А). Этот процесс протекает в клетках листа в __________ (Б) – особых пластидах зелёного цвета. Они содержат особое вещество зелёного цвета – __________ (В). Обязательным условием образования органических веществ помимо воды и углекислого газа является __________ (Г).
Список терминов:
1) дыхание
2) испарение
3) лейкопласт
4) питание
5) свет
6) фотосинтез
7) хлоропласт
8) хлорофилл

Ответ


Выберите один, наиболее правильный вариант. В клетках первичный синтез глюкозы происходит в
1) митохондриях
2) эндоплазматической сети
3) комплексе Гольджи
4) хлоропластах

Ответ


Выберите один, наиболее правильный вариант. Молекулы кислорода в процессе фотосинтеза образуются за счет разложения молекул
1) углекислого газа
2) глюкозы
3) АТФ
4) воды

Ответ


Выберите один, наиболее правильный вариант. Верны ли следующие суждения о фотосинтезе? А) В световой фазе происходит преобразование энергии света в энергию химических связей глюкозы. Б) Реакции темновой фазы протекают на мембранах тилакоидов, в которые поступают молекулы углекислого газа.
1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

Ответ


1. Установите правильную последовательность процессов, протекающих при фотосинтезе. Запишите в таблицу цифры, под которыми они указаны.
1) Использование углекислого газа
2) Образование кислорода
3) Синтез углеводов
4) Синтез молекул АТФ
5) Возбуждение хлорофилла

Ответ


2. Установите правильную последовательность процессов фотосинтеза.
1) преобразование солнечной энергии в энергию АТФ
2) образование возбуждённых электронов хлорофилла
3) фиксация углекислого газа
4) образование крахмала
5) преобразование энергии АТФ в энергию глюкозы

Ответ


3. Установите последовательность процессов, протекающих при фотосинтезе. Запишите соответствующую последовательность цифр.

2) расщепление АТФ и выделение энергии
3) синтез глюкозы
4) синтез молекул АТФ
5) возбуждение хлорофилла

Ответ


Выберите три особенности строения и функций хлоропластов
1) внутренние мембраны образуют кристы
2) многие реакции протекают в гранах
3) в них происходит синтез глюкозы
4) являются местом синтеза липидов
5) состоят из двух разных частиц
6) двумембранные органоиды

Ответ


Определите три верных утверждения из общего списка, и запишите в таблицу цифры, под которыми они указаны. В световую фазу фотосинтеза происходит
1) фотолиз воды
2) восстановление углекислого газа до глюкозы
3) синтез молекул АТФ за счет энергии солнечного света
4) соединение водорода с переносчиком НАДФ+
5) использование энергии молекул АТФ на синтез углеводов

Ответ


Все перечисленные ниже признаки, кроме двух, можно использовать для описания световой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуется побочный продукт – кислород
2) происходит в строме хлоропласта
3) связывание углекислого газа
4) синтез АТФ
5) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Процесс фотосинтеза следует рассматривать как одно из важных звеньев круговорота углерода в биосфере, так как в ходе его
1) растения вовлекают углерод из неживой природы в живую
2) растения выделяют в атмосферу кислород
3) организмы выделяют углекислый газ в процессе дыхания
4) промышленные производства пополняют атмосферу углекислым газом

Ответ


Установите соответствие между этапами процесса и процессами: 1) фотосинтез, 2) биосинтез белка. Запишите цифры 1 и 2 в правильном порядке.
А) выделение свободного кислорода
Б) образование пептидных связей между аминокислотами
В) синтез иРНК на ДНК
Г) процесс трансляции
Д) восстановление углеводов
Е) преобразование НАДФ+ в НАДФ 2Н

Ответ


Выберите органоиды клетки и их структуры, участвующие в процессе фотосинтеза.
1) лизосомы
2) хлоропласты
3) тилакоиды
4) граны
5) вакуоли
6) рибосомы

Ответ


Перечисленные ниже термины, кроме двух, используются для описания пластид. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) пигмент
2) гликокаликс
3) грана
4) криста
5) тилакоид

Ответ







Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) Для протекания процесса используется энергия света.
2) Процесс происходит при наличии ферментов.
3) Центральная роль в процессе принадлежит молекуле хлорофилла.
4) Процесс сопровождается расщеплением молекулы глюкозы.
5) Процесс не может происходить в клетках прокариот.

Ответ


Перечисленные ниже понятия, кроме двух, используются для описания темновой фазы фотосинтеза. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фиксация углекислого газа
2) фотолиз
3) окисление НАДФ·2Н
4) грана
5) строма

Ответ



Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) расщепляет биополимеры на мономеры
2) накапливает молекулы АТФ
3) обеспечивает фотосинтез
4) относится к двумембранным органоидам
5) обладает полуавтономностью

Ответ

© Д.В.Поздняков, 2009-2019

Со школьной скамьи понятие фотосинтез ассоциируется с зеленым цветом. Это цвет пигмента под названием хлорофилл. Без его скопления в листьях процесс фотосинтеза не возможен. Как же выживает белая секвойя?

Фотосинтез растений зиждется на 0,4% световых лучей. Половина из них не доходит до поверхности планеты. Из оставшихся для фотосинтеза подходит только 1/8. Работают ограничения по длине световой волны. Из подходящих лучей растения забирают 0,4%.

Если переводить в энергию, это 1% от ее общего количества. Привычное течение фотосинтеза проходит под действием света солнца. Однако, искусственные лучи растения тоже научились использовать.

Световой фотосинтез сводится к получению глюкозы. Она идет на питание . Побочный продукт реакции — кислород. Он выбрасывается представителями флоры во внешнюю среду, пополняя атмосферу Земли.

Получаются кислород и глюкоза в ходе реакции меж углекислым газом и водой. Хлорофилл в этом взаимодействии – своеобразный катализатор. Без него реакция не возможна.

Интересно, что хлорофилл встречается только в растениях. Функции, возложенные на пигмент, напоминают работу крови в организме животных. Хлорофилл подобен молекуле гемоглобина, но с магнием в центре.

В клетках же человеческой крови задействовано железо. Тем не менее, на организмы людей хлорофилл оказывает близкое к гемоглобину действие, а именно, повышает уровень кислорода крови и ускоряет обмен азота.

Реакция фотосинтеза может протекать быстро, или медленно. Все зависит от условий среды. Важны: интенсивность светового потока, температура воздуха, его насыщение углекислым газом и кислородом. Идеалом считается достижение точки компенсации. Так называют совпадение скоростей дыхания растения и выделения им кислорода.

Если свет в клетки хлоропласты, в коих скапливается хлорофилл, поступает сверху, то воду для реакции растения выкачивают из почвы. Вот зачем нужен полив растений. Недостаток влаги тормозит реакции фотосинтеза. В итоге, растение желтеет, то есть теряет хлорофилл.

Полей представителя флоры в этот момент, листья не зазеленеют. Выкачивать воду из почвы тоже помогает хлорофилл. Получается замкнутый круг. Нет полива – нет хлорофилла, нет хлорофилла – нет доставки воды в растение.

Теперь, уделим внимание глюкозе. Раз зелень вырабатывает ее из воды и углекислого газа, значит, из неорганического получается органика. Присоединяя к сахару то фосфор, то серу, то азот, растения производят витамины, жиры, белки, крахмалы. Дополнения к глюкозе травы да деревья берут из почвы. Элементы поступают растворенными в воде.

Фазы фотосинтеза

Фазы фотосинтеза – это деление процесса на фотолиз и восстановительную реакцию. Первый протекает на свету и сводится к выделению водорода. Кислород служит побочным продуктом реакции, однако, тоже нужным растению. Оно использует газ в процессе дыхания.

Световая фаза фотосинтеза возбуждает хлорофилл. От переизбытка энергии, его электрон отрывается и начинает перемещение по цепи органических соединений. В ходе путешествия частица способствует синтезу аденозиндифосфорной кислоты из аденозинтрифосфорной.

На это уходит данная электрону энергия. АДФ нужна для образования растением нуклеотидов. Они входят в нуклеиновые кислоты, без которых не возможен метаболизм представителей флоры.

Растратив энергию, электрон возвращается к молекуле хлорофилла. Эта клетка фотосинтеза вновь захватывает квант света. Уставший от работы электрон подкрепляется ею, опять отправляясь на дело. Такова световая фаза процесса. Однако, он не останавливается и в темноте.

Темновой фотосинтез направлен на захват из внешней среды уже углекислого газа. Вместе с водородом он участвует в образовании 6-углеродного сахара. Это и есть глюкоза. Этот результат фотосинтеза сопровождается, так же, образованием веществ, помогающих захватывать новые порции углекислого газа.

Захватываются они опять же, хлоропластами. Те тратят энергию, накопленную за день. Ресурс идет на связывание углекислого газа с рибулозобисфосфатом. Это 5-углеродный сахар. Реакция дает две молекулы фосфоглицериновой кислоты.

В каждой из них по 3 атома углерода. Это один из этапов цикла Кальвина. Он протекает в строме, то есть подстилке хлоропластов. Состоит цикл из трех реакций. Сначала, углекислый газ присоединяется к рубулозо-1,5-дифосфату.

Для реакции обязательно присутствие рубулозобифосфата-карбоксилазы. Это фермент. В его присутствии рождается гексоза. Из нее и получаются молекулы фосфоглицериновой кислоты.

После получения фосфоглицеринового соединения растение восстанавливает его до глицеральдегида-3-фосфата. Его молекулы идут на два «направления». В первом образуется глюкоза, а во втором рубулозо-1,5-дифосфат. Он, как помним, подхватывает газ углекислый.

Фотосинтез на обеих стадиях протекает в растениях активно, поскольку те приспособились захватывать днем максимальное количество энергии солнца. Вспомним школьные классы. Фотосинтезу посвящены несколько уроков ботаники.

Учителя рассказывают, почему у большинства растений плоские и широкие листья. Так представители флоры увеличивают площадь для улавливания квантов света. Не зря и люди сделали солнечные батареи широкими, но плоскими.

Фотосинтез углекислого газа

Углекислый газ проникает в растения через устица. Это подобие пор в листьях, стволах. Процесс всасывания газа и выпуска после через те же устица кислорода напоминает дыхание у людей.

Разница лишь в чередовании стадий. Люди вдыхают кислород, а выдыхают углекислый газ. У растений все наоборот. Так на планете удерживается равновесие двух газов в атмосфере.

Продукты фотосинтеза несут в себе энергию солнца. Животные перерабатывать ее не умеют. Съесть растения – единственная возможность «зарядиться» от дневного светила.

Перерабатывая углекислое соединение, растения способны давать людям и животным в два раза больше. Представители флоры работают с 0,03% газа в атмосфере. Как видно, углекислый газ в ней не из преобладающих.

В искусственных условиях ученые доводили процент углекислого вещества в воздухе до 0,05%. Огурцы, при этом, давали в 2 раза больше плодов. Так же реагировали на изменения , .

Уровень углекислого газа ученые повышали, сжигая в теплицах опилки и прочие отходы деревообрабатывающей промышленности. Интересно, что при концентрации газа в 0,1% растения уже не были рады.

Многие виды начинали болеть. У помидоров, к примеру, в атмосфере с переизбытком углекислого соединения начинали желтеть и скручиваться листья. Это еще одно подтверждение опасности перенасыщения атмосферы CO 2 . Продолжая вырубку лесов и развитие промышленности, человек рискует поставить оставшиеся растения в непригодные для них условия.

Повышать уровень углекислого газа до оптимального можно не только путем сжигания отходов древесины, но и внося в почву удобрения. Они провоцируют размножение бактерий.

Многие микроорганизмы вырабатывают углекислое соединение. Сосредотачиваясь у земли, оно тут же захватывается растениями, идя на благо представителей флоры и всего населения Земли.

Значение фотосинтеза

Если допустить повышение уровня углекислого газа в нижних слоях атмосферы повсеместно, а не только в экспериментальных теплицах, наступит парниковый эффект. Это то самое глобальное потепление, которое то ли уже приближается, то ли и не «светит».

Ученые не сходятся во мнениях. Если говорить о фактах, говорящих в пользу парникового эффекта, вспоминается таяние льдов Антарктики. Там обитают белые медведи. Уже несколько лет они включены в .

Частью жизни медведей исторически является преодоление водных широт на пути к новым ледникам. Устремляясь к ним, животные все чаще выбиваются из сил, так и не достигнув цели. Водные просторы увеличиваются.

Доплыть до клочков суши становится все сложнее. Порой, медведи гибнут в пути. Порой, краснокнижные хищники добираются до земли, но изможденными. Сил на охоту и переходов уже по твердой почве не остается.

Из вышесказанного делаем вывод: без фотосинтеза или с сокращением его доли, уровень углекислого газа в атмосфере спровоцирует парниковый эффект. Изменится не только климат планеты, но и состав ее обитателей, их облик, приспособления к окружающей среде.

Так будет до тех пор, пока доля углекислого соединения в воздухе не достигнет критического 1%. Далее, под вопрос встает сам фотосинтез. Воды мировых океанов могут остаться единственным его источником. Водоросли ведь тоже «дышат». Клетки, хранящие хлорофилл, у них другие.

Однако, суть процесса фотосинтеза у наземных и водных растений одна. Концентрация углекислого газа в атмосфере не обязательно передается водной среде. В ней баланс может сохраниться.

Некоторые ученые предполагают, что при постепенном увеличении доли углекислого газа в воздухе, представители флоры смогут приспособиться к новым условиям. Помидоры не станут сворачивать листья, капитулируя перед реалиями будущего.

Возможно, растения эволюционируют, научившись перерабатывать большее количество СО 2 . Догадка ученых относится к категории «лучше не проверять». Слишком рискованно.

Значение фотосинтеза связано не только с поддержанием жизни самих растений и насыщением атмосферы Земли кислородом. Ученые бьются над искусственным проведением реакций.

Расщепляемая под действием радиации солнца на водород и кислород вода – источник энергии. Энергия эта, в отличие от получаемой из нефтепродуктов и каменного угля, экологически чистая, безопасная.

Где происходит фотосинтез – не важно. Важна энергия, которую он несет с собой. Пока, человек получает ресурс, лишь поглощая растительную пищу. Возникает вопрос, как же выживают плотоядные? Они не зря охотятся на травоядных, а не себе подобных. В мясе животных, питающихся травами и листьями, сохраняется часть их энергии.

Кроме энергии фотосинтеза важны и его продукты. Кислород, к примеру, идет не только на дыхание животных, но и на образования озонового слоя. Он располагается в стратосфере Земли, на границе с космосом.

Озон – одна из модификаций кислорода, которую тот принимает, поднимаясь на тысячекилометровые высоты. Здесь элемент борется с радиацией Солнца. Не будь озонового слоя, излучение светила достигало бы поверхности планеты в опасных для всего живого дозах.

Интересно, что в деле поддержания баланса газов на планете могут помочь некоторые беспозвоночные. Слизень Elisia Chloroti, к примеру, научился ассимилировать хлоропласты водорослей.

Обитатель морей съедает их, «приручая» клетки с хлорофиллом в слизистой своего желудка. Геном слизня кодирует белки, необходимые зеленому пигменту для фотосинтеза.

Выработанные вещества поставляются хлоропластам и те «кормят» беспозвоночное сладенькой глюкозой. На ней и люди некоторое время способны выживать. Достаточно вспомнить больницы, где ослабленным вводят глюкозу внутривенно.

Сахар – основной источник энергии и, главное, быстрый. Цепочка преобразования глюкозы в чистую энергию короче, чем цепь преобразований жиров, белков. Конечно, сахар научились синтезировать искусственно.

Но, многие ученые склоняются к мнению, что полезнее для организма глюкоза растений, фруктов и овощей. Это подобно эффекту витаминов. У синтетических и природных один состав, но чуть разниться положение атомов. Опыты доказывают, что аптечный витамин С пользу дает сомнительную, а вот то же вещество из лимона или капусты – бесспорную.

Бесспорна и польза фотосинтеза. Он привычен и, одновременно, хранит еще много тайн. Познавайте их, дабы обеспечить счастливое будущее и себе, и планете в целом.

Фотосинтез - сложный процесс, включающий целую систему химических реакций. Он растянут во времени и состоит из двух фаз. Первая фаза проходит только на свету и называется световой. Вторая, темновая, фаза не зависит от световой энергии и осуществляется как на свету, так и в темноте.

На свету

Световая фаза начинается с попадания квантов света на молекулы хлорофилла, которые находятся внутри тилакоидов - плоских мембранных цистерн дисковидной формы.

Рис. 1. Строение хлоропласта.

При этом молекулы хлорофилла переходят в возбуждённое состояние и теряют электроны. Вместо утраченных электронов они присоединяют электроны молекул Н₂О или ионов ОН¯.

Происходит инициированное хлорофиллом разложение воды (фотолиз) и выделение газообразного кислорода. Одна молекула кислорода образуется из двух молекул воды.

2Н₂О → 4Н⁺ + 4е¯ + О₂

ТОП-4 статьи которые читают вместе с этой

Свободные электроны и водород проходят через сложную цепь веществ-переносчиков и фиксируются в молекулах НАДФН₂.

Рис. 2. Схема световой фазы фотосинтеза.

За счёт энергии возбуждённых электронов также происходит синтез молекул АТФ из АДФ и фосфорной кислоты.

Если кислород считается побочным продуктом световой фазы, то АТФ может считаться основным, т. к. его энергия будет затрачена на образование органических веществ из СО₂ в темновой фазе.

Таким образом, энергия света становится энергией химических связей АТФ.

На свету и в темноте

Реакции темновой фазы протекают за пределами тилакоидов, в строме хлоропласта, являющейся по своим свойствам биоколлоидом.

Суть процессов этой фазы - в превращении атмосферного углекислого газа в различные органические вещества.

С₃ и С₄ растения

Существует два пути фотосинтеза, характерные для разных видов растений. Большинство видов относится к С₃ – растениям. Это значит, что у них на первом этапе темновой фазы образуются трёхатомные углеводороды:

СО₂ + рибулозодифосфат (РДФ) + Н₂О → 2 молекулы фосфоглицериновой кислоты (ФГК).

РДФ: 5 атомов С. ФГК: 3 атома С.

Органические вещества образуются не путём сложения молекул СО₂, а при присоединении СО₂ к уже имеющимся углеводам.

Таким образом, СО₂ как бы вовлекается во внутриклеточный обмен веществ растения.

У С₄ – растений происходит образование четырёхатомных кислот:

  • яблочной;
  • щавелеуксусной;
  • аспарагиновой.

С₄ – растения имеют тропическое происхождение и очень светолюбивы. Это сорго, просо, кукуруза, сахарный тростник и др.

Продукты первого этапа проходят цикл реакций, образуя множество веществ, используемых клеткой.

У всех растений темновая фаза заканчивается образованием глюкозы, фруктозы и других шестиатомных углеводов.

Доказано, что при фотосинтезе также синтезируются белки и другие продукты.

Рис. 3. Схема темновой фазы фотосинтеза.

Признаки фаз фотосинтеза, а также результаты процессов, идущих в обеих фазах, представим в таблице:

Что мы узнали?

Проведя сравнительную характеристику двух фаз фотосинтеза, мы определили, что световая фаза является подготовительной. В ходе световой фазы: образуется кислород, запасается энергия в виде АТФ, накапливается водород. Темновая фаза использует ресурсы, полученные в ходе световой фазы и заканчивается образованием разнообразных органических соединений.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 80.